The Chernoff Bound

April 2022

Let's look at the famous Chernoff bound with an application to computational complexity theory.

 $\sum_{i=1}^{n} p_i$. Then, for any $0 < \delta < 1$ **Theorem.** Let X_1, \ldots, X_n be independent Bernoulli random variables with expected value p_1, \ldots, p_n . Let $\mu =$

$$
\Pr\left[\sum_{i=1}^{n} X_i \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \tag{1}
$$

and

$$
\Pr\left[\sum_{i=1}^{n} X_i \le (1-\delta)\mu\right] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}.
$$
\n(2)

Proof. Let $t > 0$ be arbitrary. Note that $\sum_{i=1}^{n} X_i \geq (1+\delta)\mu$ if and only if $\exp\left(\sum_i tX_i\right) \geq \exp(t(1+\delta)\mu)$. Taking the expected value of the left-hand side, we get

$$
\mathbb{E}\left[\prod_{i=1}^{n} \exp(tX_i)\right] = \prod_{i=1}^{n} \mathbb{E}[\exp(tX_i)] \text{ by independence}
$$

$$
= \prod_{i=1}^{n} (1 - p_i + p_i e^t) \text{ since } X_i \text{ are Bernoulli}
$$

$$
= \prod_{i=1}^{n} (1 + p_i(e^t - 1))
$$

$$
\leq \prod_{i=1}^{n} \exp(p_i(e^t - 1))
$$

$$
= \exp\left(\sum_{i=1}^{n} p_i(e^t - 1)\right) = \exp(\mu(e^t - 1)).
$$

Apply Markov's inequality to get

$$
\Pr\left[\prod_{i=1}^n \exp(tX_i) \ge \exp(t(1+\delta)\mu)\right] \le \frac{\exp(\mu(e^t-1))}{\exp(t(1+\delta)\mu)}.
$$

This is true for any $t > 0$, but using calculus we can find that $t = \log(1 + \delta)$ gives the minimum of the right-hand side. Thus, we get

$$
\Pr\left[\sum_{i=1}^{n} X_i \ge (1+\delta)\mu\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

by substituting $t = \log(1 + \delta)$. Similar strategy allows us to conclude the second inequality.

A more useful form of the theorem is given by the following corollary.

Corollary. With the same setup as above,

$$
\Pr\left[\sum_{i=1}^{n} X_i \ge (1+\delta)\mu\right] \le \exp\left(\frac{-\delta^2\mu}{3}\right)
$$

 \Box

and

$$
\Pr\left[\sum_{i=1}^n X_i \le (1-\delta)\mu\right] \le \exp\left(\frac{-\delta^2\mu}{2}\right).
$$

Proof. Write

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} = e^{[\delta - (1+\delta)\log(1+\delta)]\mu},\tag{3}
$$

and

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} = e^{[-\delta - (1-\delta)\log(1-\delta)]\mu}.
$$
\n(4)

For $0 \le \delta < 1$, we have the identity $\log(1-\delta) \ge \frac{-\delta + \delta^2/2}{1-\delta}$ $\frac{1+\delta}{1-\delta}$. This can be proved by observing that both sides agree at $\delta = 0$, and the derivative of the right-hand side is always smaller than that of the left. Hence,

$$
(1 - \delta) \log(1 - \delta) \ge -\delta + \delta^2/2.
$$

Substituting this into (3) , we see that (2) implies

$$
\Pr\left[\sum_{i=1}^n X_i \le (1-\delta)\mu\right] \le \exp\left(\frac{-\delta^2\mu}{2}\right).
$$

The same method as above shows the identity $log(1 + \delta) \ge \frac{\delta}{1+\delta/2}$. Plugging this into (1) and (4), we get

$$
\Pr\left[\sum_{i=1}^n X_i \ge (1+\delta)\mu\right] \le \exp\left(\frac{-\delta^2\mu}{2+\delta}\right).
$$

Since $\delta < 1$, we have

$$
\Pr\left[\sum_{i=1}^n X_i \ge (1+\delta)\mu\right] \le \exp\left(\frac{-\delta^2\mu}{3}\right).
$$

 \Box

0.1 An application to computational complexity theory

The Chernoff bound intuitively says that if we have a coin that has 0.357 probability of landing heads, then, with exponentially high probability in the number of times we toss it, the ratio of heads is in 0.357 ± 0.02 . Of course, 0.357 and 0.02 are arbitrary.

Theorem (Error reduction for **BPP**, 7.10 of Arora and Barak). Let $L \subseteq \{0,1\}^*$ be a language and suppose that there exists a poly-time probabilistic TM M such that for every $x \in \{0,1\}^*$, $Pr[M(x) = L(x)] \ge 1/2 + |x|^{-c}$. Then, for every constant $d > 0$, there is a poly-time probabilistic TM M' such that for every $x \in \{0,1\}^*$, $Pr[M(x) = L(x)] \geq 1-2^{-|x|^d}$.

Proof. The idea is to simply call M many times and take the majority of the bits returned by M . More precisely, M' calls M for a total of k times to get bits b_1, \ldots, b_k . Here, k is an unknown number we need to find out. Then, M' returns the majority of b_1, \ldots, b_k . Define the random variables X_i with $X_i = 1$ if $b_i = L(x)$ and $X_i = 0$ otherwise. Note that if more than $k/2$ of X_i is 1, then M' is correct. The expected value of X_i is $p = 1/2 + |x|^{-c}$. So the expected value of $X = X_1 + \ldots + X_k$ is pk. We wish to use the Chernoff bound

$$
\Pr\left[X \le (1 - \delta)pk\right] \le \exp(-\delta^2 \mu/2)
$$

for some suitable δ . Note that for this to give us what we need, we must have $(1 - \delta)p \ge 1/2$. Plugging in the value of p, we see that we can take $\delta = |x|^{-c}/2$.

Finally, we want k such that $\exp(-\delta^2 \mu/2) \leq 2^{-|x|^d}$. Solving, we see that $k = 16 \log(2)|x|^{d+2c}$ is a solution. \Box

This result is crucial since it explains how the success rate of $2/3$ in the definition of BPP can simply be replaced by any constant > 1/2, or even a shrinking $1/2 + |x|^{-c}$.

Another application is about randomized reduction to 3Sat. It turns out the success rate of reduction can be improved to arbitrarily high as well.

Theorem. Let $L \subseteq \{0,1\}^*$ be a language and suppose that there exists a poly-time probabilistic TM M such that for every $x \in \{0,1\}^*$, if $x \in L$, then $\Pr[M(x) \in 3Sat] \geq 1/2 + |x|^{-c}$, otherwise $\Pr[M(x) \notin 3Sat] \geq 1/2 + |x|^{-c}$. Then, for every constant $d > 0$, there is a poly-time probabilistic TM M' such that for every $x \in \{0,1\}^*$, if $x \in L$, then $Pr[M(x) \in 3Sat] \ge 1 - 2^{-|x|^d}$, otherwise $Pr[M(x) \notin 3Sat] \ge 1 - 2^{-|x|^d}$.

Proof. The calculations in this proof are exactly the same as the last one. On input |x|, the machine M' runs $M k$ times with fresh randomness each time to get boolean formulas $\phi_1(y_1), \ldots, \phi_k(y_k)$. Each ϕ_i has length polynomial in |x|, so do the y_i's. Consider the formula $Maj_{i=1}^k \phi_i(y_i)$. This is satisfiable if and only if more than half of the ϕ_i 's are satisfiable. This is guaranteed to happen with exponentially high probability if x is in L , otherwise it happens with exponentially low probability. \Box

This theorem leads to a short proof to $BP \cdot NP \subseteq NP/poly$, which is analogous to the proof of $BPP \subseteq P/poly$.