The Chernoff Bound
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Let’s look at the famous Chernoff bound with an application to computational complexity theory.

Theorem. Let Xi,...,X, be independent Bernoulli random variables with expected value pi,...,p,. Let p =
S pi. Then, for any 0 <46 <1
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Proof. Let t > 0 be arbitrary. Note that > | X; > (1 + §)p if and only if exp (>, tX;) > exp(¢(1 + §)u). Taking
the expected value of the left-hand side, we get
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Apply Markov’s inequality to get

exp(u(e! — 1))
= exp(t(1+ )

Pr [H exp(tX;) > exp(t(1+d)u)
i=1

This is true for any ¢t > 0, but using calculus we can find that ¢t = log(1 + §) gives the minimum of the right-hand

side. Thus, we get
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by substituting ¢ = log(1 + J). Similar strategy allows us to conclude the second inequality. O
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A more useful form of the theorem is given by the following corollary.
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Corollary. With the same setup as above,
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For 0 < § < 1, we have the identity log(1 —§) > 75%5;/2. This can be proved by observing that both sides agree

at 0 = 0, and the derivative of the right-hand side is always smaller than that of the left. Hence,
(1—6)log(l — &) > —6+ 6%/2.

Substituting this into (3), we see that (2) implies

gxi <(1- 5)#] < exp (‘fu) .

The same method as above shows the identity log(1 + §) > 1+fi/2' Plugging this into (1) and (4), we get
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Since § < 1, we have
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0.1 An application to computational complexity theory

The Chernoff bound intuitively says that if we have a coin that has 0.357 probability of landing heads, then, with
exponentially high probability in the number of times we toss it, the ratio of heads is in 0.357 £ 0.02. Of course,
0.357 and 0.02 are arbitrary.

Theorem (Error reduction for BPP, 7.10 of Arora and Barak). Let L C {0,1}* be a language and suppose that there
exists a poly-time probabilistic TM M such that for every x € {0,1}*, Pr[M (z) = L(x)] > 1/2+|z|~¢. Then, for every
constant d > 0, there is a poly-time probabilistic TM M’ such that for every x € {0,1}*, Pr[M(x) = L(x)] > 1—2- Il

Proof. The idea is to simply call M many times and take the majority of the bits returned by M. More precisely,
M’ calls M for a total of k times to get bits by, ...,b,. Here, k is an unknown number we need to find out. Then, M’
returns the majority of by, ..., bg. Define the random variables X; with X; = 1 if b; = L(z) and X; = 0 otherwise.
Note that if more than k/2 of X; is 1, then M’ is correct. The expected value of X; is p = 1/2 + |z|~°. So the
expected value of X = X7 + ...+ Xj is pk. We wish to use the Chernoff bound

Pr[X < (1 - 4)pk] < exp(—0%/2)

for some suitable §. Note that for this to give us what we need, we must have (1 — §)p > 1/2. Plugging in the value
of p, we see that we can take § = |z|7¢/2.

Finally, we want k such that exp(—62u/2) < 27171, Solving, we see that k = 161log(2)|z|%+2¢ is a solution. O

This result is crucial since it explains how the success rate of 2/3 in the definition of BPP can simply be replaced
by any constant > 1/2, or even a shrinking 1/2 + |x|~¢.

Another application is about randomized reduction to 3Sat. It turns out the success rate of reduction can be
improved to arbitrarily high as well.



Theorem. Let L C {0,1}* be a language and suppose that there exists a poly-time probabilistic TM M such that for
every x € {0,1}*, if © € L, then Pr[M(x) € 3Sat] > 1/2 + |x|~¢, otherwise Pr[M(z) ¢ 3Sat] > 1/2 + |z|~¢. Then,
for every constant d > 0, there is a poly-time probabilistic TM M' such that for every x € {0,1}*, if x € L, then
Pr[M(z) € 3Sat] > 1 — 272" otherwise Pr[M(z) ¢ 3Sat] > 1 — 2121,

Proof. The calculations in this proof are exactly the same as the last one. On input |z|, the machine M’ runs M k
times with fresh randomness each time to get boolean formulas ¢;(y1), ..., dr(yx). Each ¢; has length polynomial
in |x|, so do the y;’s. Consider the formula Maj*_ | #;(y;). This is satisfiable if and only if more than half of the ¢;’s
are satisfiable. This is guaranteed to happen with exponentially high probability if = is in L, otherwise it happens
with exponentially low probability. O

This theorem leads to a short proof to BP - NP C NP /poly, which is analogous to the proof of BPP C P /poly.



