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Let’s look at the famous Chernoff bound with an application to computational complexity theory.

Theorem. Let X1, . . . , Xn be independent Bernoulli random variables with expected value p1, . . . , pn. Let µ =∑n
i=1 pi. Then, for any 0 < δ < 1

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ

(1)

and

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤
(

e−δ

(1− δ)1−δ

)µ

. (2)

Proof. Let t > 0 be arbitrary. Note that
∑n

i=1 Xi ≥ (1 + δ)µ if and only if exp (
∑

i tXi) ≥ exp(t(1 + δ)µ). Taking
the expected value of the left-hand side, we get

E

[
n∏

i=1

exp(tXi)

]
=

n∏
i=1

E[exp(tXi)] by independence

=

n∏
i=1

(1− pi + pie
t) since Xi are Bernoulli

=

n∏
i=1

(1 + pi(e
t − 1))

≤
n∏

i=1

exp(pi(e
t − 1))

= exp

(
n∑

i=1

pi(e
t − 1)

)
= exp(µ(et − 1)).

Apply Markov’s inequality to get

Pr

[
n∏

i=1

exp(tXi) ≥ exp(t(1 + δ)µ)

]
≤ exp(µ(et − 1))

exp(t(1 + δ)µ)
.

This is true for any t > 0, but using calculus we can find that t = log(1+ δ) gives the minimum of the right-hand
side. Thus, we get

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ

by substituting t = log(1 + δ). Similar strategy allows us to conclude the second inequality.

A more useful form of the theorem is given by the following corollary.

Corollary. With the same setup as above,

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤ exp

(
−δ2µ

3

)

1



and

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤ exp

(
−δ2µ

2

)
.

Proof. Write (
eδ

(1 + δ)1+δ

)µ

= e[δ−(1+δ) log(1+δ)]µ, (3)

and (
e−δ

(1− δ)1−δ

)µ

= e[−δ−(1−δ) log(1−δ)]µ. (4)

For 0 ≤ δ < 1, we have the identity log(1− δ) ≥ −δ+δ2/2
1−δ . This can be proved by observing that both sides agree

at δ = 0, and the derivative of the right-hand side is always smaller than that of the left. Hence,

(1− δ) log(1− δ) ≥ −δ + δ2/2.

Substituting this into (3), we see that (2) implies

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤ exp

(
−δ2µ

2

)
.

The same method as above shows the identity log(1 + δ) ≥ δ
1+δ/2 . Plugging this into (1) and (4), we get

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤ exp

(
−δ2µ

2 + δ

)
.

Since δ < 1, we have

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤ exp

(
−δ2µ

3

)
.

0.1 An application to computational complexity theory

The Chernoff bound intuitively says that if we have a coin that has 0.357 probability of landing heads, then, with
exponentially high probability in the number of times we toss it, the ratio of heads is in 0.357 ± 0.02. Of course,
0.357 and 0.02 are arbitrary.

Theorem (Error reduction for BPP, 7.10 of Arora and Barak). Let L ⊆ {0, 1}∗ be a language and suppose that there
exists a poly-time probabilistic TM M such that for every x ∈ {0, 1}∗, Pr[M(x) = L(x)] ≥ 1/2+|x|−c. Then, for every

constant d > 0, there is a poly-time probabilistic TM M ′ such that for every x ∈ {0, 1}∗, Pr[M(x) = L(x)] ≥ 1−2−|x|d .

Proof. The idea is to simply call M many times and take the majority of the bits returned by M . More precisely,
M ′ calls M for a total of k times to get bits b1, . . . , bk. Here, k is an unknown number we need to find out. Then, M ′

returns the majority of b1, . . . , bk. Define the random variables Xi with Xi = 1 if bi = L(x) and Xi = 0 otherwise.
Note that if more than k/2 of Xi is 1, then M ′ is correct. The expected value of Xi is p = 1/2 + |x|−c. So the
expected value of X = X1 + . . .+Xk is pk. We wish to use the Chernoff bound

Pr [X ≤ (1− δ)pk] ≤ exp(−δ2µ/2)

for some suitable δ. Note that for this to give us what we need, we must have (1− δ)p ≥ 1/2. Plugging in the value
of p, we see that we can take δ = |x|−c/2.

Finally, we want k such that exp(−δ2µ/2) ≤ 2−|x|d . Solving, we see that k = 16 log(2)|x|d+2c is a solution.

This result is crucial since it explains how the success rate of 2/3 in the definition of BPP can simply be replaced
by any constant > 1/2, or even a shrinking 1/2 + |x|−c.

Another application is about randomized reduction to 3Sat. It turns out the success rate of reduction can be
improved to arbitrarily high as well.
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Theorem. Let L ⊆ {0, 1}∗ be a language and suppose that there exists a poly-time probabilistic TM M such that for
every x ∈ {0, 1}∗, if x ∈ L, then Pr[M(x) ∈ 3Sat] ≥ 1/2 + |x|−c, otherwise Pr[M(x) /∈ 3Sat] ≥ 1/2 + |x|−c. Then,
for every constant d > 0, there is a poly-time probabilistic TM M ′ such that for every x ∈ {0, 1}∗, if x ∈ L, then

Pr[M(x) ∈ 3Sat] ≥ 1− 2−|x|d , otherwise Pr[M(x) /∈ 3Sat] ≥ 1− 2−|x|d .

Proof. The calculations in this proof are exactly the same as the last one. On input |x|, the machine M ′ runs M k
times with fresh randomness each time to get boolean formulas ϕ1(y1), . . . , ϕk(yk). Each ϕi has length polynomial
in |x|, so do the yi’s. Consider the formula Majki=1ϕi(yi). This is satisfiable if and only if more than half of the ϕi’s
are satisfiable. This is guaranteed to happen with exponentially high probability if x is in L, otherwise it happens
with exponentially low probability.

This theorem leads to a short proof to BP ·NP ⊆ NP/poly, which is analogous to the proof of BPP ⊆ P/poly.
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