

Fengine
A 2D GAME ENGINE MADE IN C++

Andrew Feng | MIT Maker Portfolio | 2018 - 2019

 PAGE 1

I. Introduction

This documentation of Fengine is divided into 6 sections that each corresponds to a major

component of the engine. The components are presented in the chronological order in

which they are added to the project, starting from the rendering system written in the

summer after grade 10. However, they are constantly maintained/updated by me and my

friends.

The engine contains over 70 classes & data types and is still expanding, which means it’s

impossible to address the entire engine in one single PDF document.

Still, I would love to present to you the most interesting parts of Fengine. If you are under

time constraint reading this doc, I suggest you to read the following parts (ranked by

importance):

1. What I learned from Making Fengine (~5 min)

2. Scripting System, especially the Script class (~15 min)

3. Physics System (~15 min)

4. Rendering System, especially the Animation class and the Flashlight class (~10

min)

However, I highly suggest reading this documentation in order if you have enough time

(~60 min).

If you are interested in this project after reading this document, or are curious about the

implementation details, you can find important links about this project below.

Repositories:

 PAGE 2

• Fengine: https://bitbucket.org/milkyway2017/fengine/src/master/

• Designated Stim Area (a demo game project & the entry point):

https://bitbucket.org/milkyway2017/fengine/src/master/

• Dependency – Windows:

https://bitbucket.org/milkyway2017/dependency/src/master/

• Dependency – Ubuntu:

https://bitbucket.org/milkyway2017/dependency_linux/src/master/

Development Blog:

• https://milkyway-project.000webhostapp.com/

Doxygen Documentation:

• https://milkywaytest.000webhostapp.com/annotated.html

Many of the feature in the engine may seem too specific or not useful to other games,

because the engine was originally made for a game called Designated Stim Area, but the

development focus has shifted to the game engine.

II. What I learned from Making Fengine

Growing up as a gamer, I had a natural desire to make a game of my own, more

specifically, a game that could bring people the joy gaming had brought me. My plan was

simple: I would code the program and my friends would design the art. I quickly gathered

a group of interested friends to join.

To program a game, I had two choices: use an existing game engine like Unity, or program

everything from scratch with C++. The former choice allowed game development with

minimum programming, but I chose the second option, thinking, “what can go wrong in

going deeper and learning a bit more programming?” Well, as it turned out, using C++ to

program a game from scratch is the second worst decision one can make next to making

an app using assembly code. For example, it took me a full day of coding to display an

image on screen, something that could be done with just one line of C# using Unity. I

spent over two months, reading over technical tutorial blogs and devising software

architecture, only to program a rendering system. As a result, team meetings became a

place where I passionately showcased how I made the sliding door open when a character

approaches while my friends puzzled over my excitement – even they could do that using

a few lines of code in Unity! They didn’t understand that what they saw was the reward for

my many nights of frustration and hardcore debugging. Worse, it was frustrating for me to

see the confusion among my friends: I assumed they knew the effort behind the project

and had no idea that I, in fact, failed to deliver robust software for the game. I became so

obsessed with programming that I forgot to think about things that really matter to a

game, such as the theme and the plot. I oriented the project around the software, the

https://bitbucket.org/milkyway2017/fengine/src/master/
https://bitbucket.org/milkyway2017/fengine/src/master/
https://bitbucket.org/milkyway2017/dependency/src/master/
https://bitbucket.org/milkyway2017/dependency_linux/src/master/
https://milkyway-project.000webhostapp.com/
https://milkywaytest.000webhostapp.com/annotated.html

 PAGE 3

exact opposite of the correct approach. I left my artistic friends with no clear instructions

on what to create and rendered a blurry picture of the project’s future. Gradually, most of

them quietly withdrew from the project while I was still worrying about the efficiency of

my collision detection algorithm.

My game project failed miserably, and it didn’t take me long to see the reasons for my

failure: a project is destined to fail if the leader cannot provide a blueprint for it and

engage the members to work toward clear goals. A leader’s job is not to say “you guys

work on whatever while I get this bug fixed!” Even though this realization arrived too late

to save the project, there’s a bright side to my failure: I discovered how much I love

software engineering. After all, I was too focused on the “art” of programming to care

about the content creating process; I found more pleasure in engineering tools to help

game developers than in using existing tools to create games. So, I continued the project

as a game engine – Fengine.

Truly driven by passion, I dedicated hours every day to either create new features, or to

optimize the performance of existing features. I acquired necessary skills and knowledge

along the way. For example, I learned linear algebra to program the rendering system,

took courses on edX to learn about algorithms and data structures, and studied proper

software engineering techniques to improve code quality. Surprisingly, my dedication

attracted two of my techie friends – I was again given another opportunity to be a leader!

This time, I planned out development schedules for the team and gave clear instructions

to the members.

In fact, I gave hours of guidance to each of them, introducing them to different parts of

the engine: Stanislav to user interface and Filip to physics. Together, we improved the

system and invented interesting parts. For example, Stas worked to make sure the engine

runs on Linux and created a convenient StatusBar class for tracking game stats. Filip

devised plans with me to improve the inefficient visibility polygon algorithm of Flashlight

and troubleshot the rendering system. My friends have since shared their insights (on how

to improve usability, or on questions like: if they are the users, what kind of API they

https://bitbucket.org/milkyway2017/fengine/commits/6960a0da614240a603209dfde656496e4c749528
https://bitbucket.org/milkyway2017/fengine/commits/6960a0da614240a603209dfde656496e4c749528
https://bitbucket.org/milkyway2017/fengine/commits/dc98cc5d9d5f72b85b4586bc4b5307ed5e7a3dd8
https://bitbucket.org/milkyway2017/fengine/issues/28/bugs-optimization-flashlight

 PAGE 4

would want to use) with me, motivating me to continue improving and adding cool

features to the engine.

In the end, my project taught me not just technical skills, but also the importance of

organization and teamwork.

 PAGE 5

III. Table of Contents

I. Introduction ... 1

II. What I learned from Making Fengine .. 2

III. Table of Contents ... 5

IV. Project Setup ... 7

V. Rendering System .. 8

➢ Purpose .. 8

➢ Showcase ... 8

➢ Technical detail .. 9

❖ Graphics (Graphics.h) .. 9

❖ Sprite (Sprite.h) .. 10

❖ Animation (Animation.h) .. 11

❖ GLShape and GLVertex (Primitive.h) ... 12

❖ Flashlight (Flashlight.h) .. 14

VI. Entity System ... 18

➢ Purpose ... 18

➢ Effect ... 18

➢ Technical Detail .. 18

❖ Object (Object.h) ... 18

❖ Figure (Figure.h) ... 20

❖ GameItem (GameItem.h) .. 21

VIII. Map System (Map.h).. 23

➢ Purpose .. 23

➢ Effect .. 23

➢ Technical Detail ... 23

❖ Overview ...23

❖ Map Loading (Map::LoadMap): ...23

❖ Entity Query System ... 27

❖ Utility Functions for Objects ... 29

IX. Scripting System, Event System, and Functor and Timers.. 30

 PAGE 6

➢ Purpose .. 30

➢ Effect .. 30

➢ Technical Detail ... 30

Functor (Functor.h) .. 30

❖ EventManager (EventManager.h) .. 31

❖ Timer (Timer.h) ...32

❖ Script (Script.h) ... 34

X. Physics System .. 39

➢ Purpose .. 39

➢ Effect .. 39

➢ Technical Detail ... 39

❖ World (Kinematics.h) ... 39

❖ Quadrant (Quadrant.h) ... 40

❖ Motion (Kinematics.h) .. 41

❖ Body (Kinematics.h) ... 43

XI. Utility ... 46

❖ Point2F – 2D vector (Primitive.h) .. 46

❖ Rect4F – 4D vector (Primitive.h) ... 46

❖ Angle (Primitive.h) ... 46

❖ Other Primitives (GLColor, GLVertex, GLShape, Line, Circle…) 46

XII. Things to be improved... 47

 PAGE 7

IV. Project Setup

Language: C++14, with some libraries written in C

Code Convention: The Google C++ Style

Documentation: Doxygen

Environment Setup:

- Windows: MSVC as compiler, Visual Studio 2017 (preferred) or CLion as IDE

- Ubuntu(18.04): gcc as compiler, CLion as IDE

Build System: CMake (minimum version required: 3.0)

Dependency:

• Windows: https://bitbucket.org/milkyway2017/dependency/src/master/

• Ubuntu: https://bitbucket.org/milkyway2017/dependency_linux/src/master/

- OpenGL for graphics (with glew and glm)

- SDL2 for cross-platform window creation and user input

- CEGUI for GUI (deprecated and will be replaced by imgui soon)

- JSON for Modern C++ for JSON parsing

- MicroPather for A* path finding

- LibUTF++ for Unicode encoding

https://bitbucket.org/milkyway2017/dependency/src/master/
https://bitbucket.org/milkyway2017/dependency_linux/src/master/
http://glew.sourceforge.net/
https://glm.g-truc.net/0.9.9/index.html
https://www.libsdl.org/index.php
http://cegui.org.uk/
https://github.com/ocornut/imgui
https://github.com/nlohmann/json
https://github.com/leethomason/MicroPather
https://github.com/codebrainz/libutfxx

 PAGE 8

V. Rendering System

➢ PURPOSE

Initially, the engine drew objects using the basic functionalities provided by the SDL

library. Though engine was able to render rectangular images, do rotations, and fade, it

provided too little flexibility for game development. For example, it did not even allow

developers to draw basic shapes like triangles, not to mention the cool visual effects seen

in many games. This is why I decided to embark on my journey to overhaul the existing

rendering system and learn to integrate the graphics library OpenGL.

➢ SHOWCASE

Before the overhaul the engine was able to do basic image rendering and animation:

After the overhaul, the engine was able to read in any custom shader files and draw any

arbitrary objects! The developer is in control of everything:

 PAGE 9

➢ TECHNICAL DETAIL

❖ Graphics (Graphics.h)

The most important class of the rendering system is the Graphics class. The class exists as

a singleton1 that provides low level functionalities such as shape rendering, font loading,

and texture loading. Functions in Graphics are called by higher level classes. Here is a

simplified diagram for Graphics:

The class acts as a wrapper around library code, abstracting away third party library such

as OpenGL or GLM. This way the game developers do not need to worry about the

underlying libraries. For example, GetTexture allows the user to load textures from

image files without worrying about the underlying library function calls:

GLuint texture = graphics->GetTexture(“image.png”);

Image loading and displaying is further simplified by the Sprite class.

1 All singletons in Fengine are accessible by calling ___::GetInstance(). So to get
Graphics, one would call Graphics::GetInstance()

 PAGE 10

Most importantly, the fact that this class only contains low level features doesn’t

undermine its user friendliness.

For example, it can be annoying having to type out RGB values when we the developers

just want a color for debugging. For this purpose, the Graphics class provides convenient

features such as GetColor(color_name), allowing the developers to pick from over 100

default colors given their names:

auto color_blue = Graphics::GetInstance()->GetColor(“blue”);

Developers can also load their own set of project specific colors by calling LoadColor and

passing in the path to a JSON color file2.

❖ Sprite (Sprite.h)

The Sprite class provides the ability to display images. Even though one can load and

display textures using Graphics::GetTexture and Graphics::BlitSurface, it can get

quite messy, especially when multiple sprites are to be displayed. Sprite class allows the

developers to load and display a texture with only 3 lines of code:

Sprite sprite;

sprite.Init(“image.png”, {0,0,314,628});

//some other processing. . .

sprite.Draw(shader); //shader is compiled beforehand

Instead of:

GLuint texture = graphics->GetTexture(“image.png”);

//setup shape for rendering

GLShape shape;

//assign positions to vertices of the shape

SubRect(shape, {0,0,314,628});

//assign texture coordinates to vertices of the shape

SubRectTextCoord(shape);

//multiple other steps to set up VAO (vertex array object) and VBO

//(vertex buffer object) for OpenGL

2 An acceptable JSON color file has the following format: {colors: [{“name”: ”Blue”, ”hex”: ”
#0000ff”, ”rgb”: ”(0, 0, 255)”}]}

 PAGE 11

//. . .

//finally display

graphics->BlitSurface(shader, texture, shape);

As you can already tell from above, the Sprite class makes it convenient to display image.

This saves the developers from worrying about low level processing details such as vertex

management.

Even though this is not much improvement from the SDL library’s functions that also

allow less-than-5-line display of textures, the process of building and maintaining this

class taught me quite a bit about usability consideration. For example, a Sprite object

allows the user to link it with some object by calling SetReferenceDestinationRect.

This works as the Sprite object now owns a pointer to a “Destination Rectangle” object.

Once set, the sprite object would be in “reference mode”, and the user no longer needs to

update the sprite’s position every frame to move it; instead, the sprite “automatically”

follows the destination rectangle. This is useful in game programming, where things are

constantly moving around, and positions need to synchronize every frame.

❖ Animation (Animation.h)

The Animation class inherits from Sprite and allows the developers to use Sprite as a

sprite sheet for animation. Here is a diagram for Animation:

To create an animation, the developer can:

• Initialize an Animation object by Animation::Init, and pass in the path to the

sprite sheet, the refresh time (not rate) for the animation, and the rectangular

 PAGE 12

position on the screen (again, one may pass in a pointer to a rectangle instead

here).

• Add an action to the animation by calling Animation::AddAction with the

following parameters (for this sample sprite sheet)

animation.AddAction(SLIME_WALKING, 0, 0, 20, 25, 6);

• Play the action added by calling Animation::PlayAction(SLIME_WALKING)!

The Animation class even supports callbacks on specified frames (see the second

PlayAction definition in the diagram). This allows certain actions to take place when the

Animation gets to some frames. It’s useful in many ways; for example, in the case where

the character needs to fire an attack event when the attack animation finishes.

When accompanied with the Event System and Functor, this feature of Animation

becomes very powerful.

❖ GLShape and GLVertex (Primitive.h)

Shape and vertex are the most basic structures in Fengine’s rendering system. They are the

basis of all rendering process in the engine. From the most basic image display to the

more complex polygon display (such as the visibility polygon with the MIT logo displayed

earlier), the GLShape and GLVertex support it all.

Here are the structures of these types:

 PAGE 13

Each GLShape contains a list of GLVertex that make up the vertices of the shape. Each

vertex is allowed to have a position, color, and texture coordinate.

position: describes the location of the vertex on screen;

color: describes the color at the vertex position, areas in between vertices will have a color

gradient;

texture_coordinate: specifies the position in the texture this vertex represents. If a shape

has no texture associated with it, texture_coordinate will not be used when drawing.

For example, to render a colored triangle, GLShape would contain the following info:

 PAGE 14

To draw a shape, one can call Graphics::BlitSurface with the shader, texture, and

shape.

The process of setting the position and texture coordinate of each vertex is tedious and

repetitive, and this is reason the Sprite class exists.

However, sometimes the flexibility is required to rendering non-tradition objects.

❖ Flashlight (Flashlight.h)

The Flashlight class inherits from the GameItem class and is an implementation of the

visibility polygon algorithm. This class seem extra for a game engine to include, but I still

implemented it as the algorithm is quite interesting and complex.

The following steps are taken by the algorithm to find the visibility polygon:

1. Line segments and vertices of walls in the casting region are collected:

http://openglbook.com/chapter-2-vertices-and-shapes.html

 PAGE 15

2. Imaginary “rays” are casted from the center to each vertex (by simply constructing

line segments from the origin to each vertex):

3. For each “ray”, its closest intersection with a wall is found (this is to erase the parts

that “penetrated” the wall):

 PAGE 16

4. The intersections are sorted and triangles are constructed to generate the GLShape

for rendering:

While this algorithm seems simple when described in steps, the process of coding

the algorithm actually took over a month (during the beginning of grade 11),

mainly because of the time taken to implement base functions such as line

intersection and 2d ray casting. (I was trying to learning linear algebra at that

time.)

Efforts have been taken to optimize the algorithm; for example, the times of line

intersection checks are minimized. This is done by first generating an

“AngleRangeList” for all walls and, when casting rays, only checking necessary

 PAGE 17

walls for intersection. In the example below, we are trying to cast a ray from the

origin to point A, and the top and bottom walls are quickly eliminated since their

“angle ranges” do not include the ray’s principal angle.

The reason this is faster is that now, to eliminate a wall, the algorithm only needs

to check if the ray is within the “angle range” of that wall (and the “angle range” of

all walls relative origin only needs to be calculated once!), whereas before, the

algorithm needs to calculate the ray’s intersection with every wall (and this must

be repeated for all rays – on all walls!).

This was able to improve the performance of the algorithm by around 30% during

testing (with over 200 vertices in range), because many useless checks are avoided.

However, the algorithm’s worse case remains O(n2) where n is the edge count. In

practice, the algorithm usually takes less than 1~2 millisecond per frame.

https://bitbucket.org/milkyway2017/fengine/commits/60c06bd98b2bab54ae3ec45d5b17461932d3bc4a
https://bitbucket.org/milkyway2017/fengine/commits/60c06bd98b2bab54ae3ec45d5b17461932d3bc4a

 PAGE 18

VI. Entity System

➢ PURPOSE

A game, in essence, is just interactions between different entities. In Fengine, we classify

entities using three classes: Object, Figure, and GameItem. Each of these classes acts like

an “interface”, providing base functionality as well as virtual functions that can be

implemented by game developers themselves.

However, the entity system one of my earlier works (the framework was laid during the

beginning of my grade 11 year), so some parts of the entity system may not be the smartest

design. If I were to program the system now, it would be vastly different ☺.

➢ EFFECT

All entities are updated and drawn every frame. This means that every entity will contain

an Update and a Draw function.

The Update function allows the entity to update internal states. For example, a monster

may choose to update its behavior according to the position of the player.

The Draw function allows the entity to render itself using the rendering system. For

example, an object may simply proceed to draw its body animation.

The Update and Draw functions of all entities are called automatically by the Map class

every frame once they are added to a Map.

➢ TECHNICAL DETAIL

❖ Object (Object.h)

The need for an Object class emerged when more than one types of object appear. For

example, it would be inefficient for a system to treat Player and Monster as totally

different entities:

//inefficient

player_.Update();

monster_type1_.Update();

monster_type2_.Update();

//. . .

monster_typen_.Update();

 PAGE 19

//efficient

for(auto & object : objects)

 object.Update();

To efficiently update and render the player and the monster, it is better to have them

share a base class, which I called Object. It made more sense to treat both player and

monster as Object so that generic calls can be made on them. To implement this, I

employed polymorphism. Similar techniques are used for Figure and GameItem.

The following functions are in my opinion the most significant ones (the declaration

alone, without definition, of the Object class is 400 lines long, so this is only a part of it):

To create a new custom type of object, the developer just needs to create a new class that

derives from Object.

The virtual functions shown above can be overridden by the derived class. For example,

since the behaviors of different objects vary, they can override the virtual Update

function differently. This is left to the game developers to decide.

 PAGE 20

Having a structure like this allows flexibility and, at the same time, regulates the standard

features all game objects should possess.

A list of object utility functions is available (see “base” tree in diagram). These functions

allow developers to easily prototype object behaviors without worrying much about the

underlying details. For instance:

• SetMovementState(direction, status) allows one to control the movement

of object (such as movement direction)

• BeginFollowing(other_object) allows one object to follow another. The A*

algorithm takes obstacles into account and generates the shortest path the object

can take on the 2D tiled map to follow another object.

• GoTo also uses A* to generate the shortest path, but to a fixed coordinate in map.

The interactions between objects and maps are also standardized through Object’s

SendAttack, ReceiveAttack, PickUpItem, and DropItem base functions, which fire

events in the Event System.

❖ Figure (Figure.h)

The Figure class is used to represent entities that are normally considered parts of the

map, such as walls and doors. A Figure object may or may not be stationary, it completely

depends on the type of Figure. For example, a SlidingDoor (a custom class deriving from

Figure) is able to move when a certain event is fired in the Event System.

This class used to have its own collision detection algorithm against Objects, but now the

physics system handles that. Similar to the Object class, the base Figure provides base

functions that the derived figure classes may override:

 PAGE 21

• Init offers one way to initialize the figure, and another way is by using the

constructor of the class. Both ways give the same result, but allow flexibility on the

developer’s side: they get to decide when to initialize the objects.

• SetSolidity function is used to set whether the body of the figure is solid (true if

the figure blocks objects, false otherwise)

❖ GameItem (GameItem.h)

The following diagram shows the most important functions of the GameItem class:

A GameItem object, as the name suggests, holds a game item. It can represent anything

that an Object can carry.

 PAGE 22

• Objects can pick up and drop off items by calling the Object::PickupItem and

Object::DropItem base functions. The two base functions of the Object class in

turn make calls to the item’s GameItem::Own and GameItem::Drop functions.

• Objects can use its item by calling the item’s GameItem::Use and

GameItem::Activate functions. Other convenient alternatives are also provided,

such as GameItem::Toggle. Note that these item functions are pure virtual,

meaning that the developers must implement them if they are creating a new item

(because a Handgun::Use would be very different from a MachineGun::Use).

The interaction between Object and GameItem is designed in such a way that once an

object picks up an item by calling its own Object::PickUpItem function, it is allowed to

call the member functions of the GameItem. It may seem bizarre that sometimes we need

to call the Object’s functions to operate an item, while at other times we call the item’s

functions. But, this logic makes sense to our team because, in real life, once one picks up

an item (by calling his/her own “Hand” function), he/she is able to use the item (by

calling the item’s “Use” function).

 PAGE 23

VIII. Map System (Map.h)

➢ PURPOSE

Maps are an integral part of a game. Unlike many small scale games, where maps can be

hard-coded into the source code, a game engine must be able to load map files, because

modifying an external file (such as JSON or XML) is much more efficient than changing

and recompiling the source code. I designed Fengine to be compatible with Tiled Map

Editor so that levels can be created without changing or recompiling any source code. In

addition, Fengine provides the ability to read in customized configuration files called

“ObjDef” for different game entities.

Map is also the “container” of all entities introduced previously; all entities are contained

in Map objects and are able to make queries on the environment using utility functions

provided by the Map.

➢ EFFECT

• Game developers are able to create, modify, and update maps/levels using the

Tiled map editor, without changing any source code.

• Behaviors/stats of objects can be altered using ObjDef files

➢ TECHNICAL DETAIL

❖ Overview

Essentially, all a game is doing is update and render. Therefore, the map operates by its

two most important functions: Map::Update and Map::Draw.

Map::Update makes calls to the Update functions of all entities it contains:

//simplified version

void Update(Uint32 time_passed) {

 //update entities

 for(auto & entity : entities) {

 entity->Update(time_passed);

}

}

Map::Draw functions similarly to this.

❖ Map Loading (Map::LoadMap):

In the level editor Fengine supports, there are mainly two things that can be done:

https://www.mapeditor.org/
https://www.mapeditor.org/

 PAGE 24

1. Creating tile layers

This process is like installing floor tiles in real life, developers can “paste” the floor

textures from a file called “tileset”:

(editor)

(tileset used)

2. Creating objects:

Wall entities in Fengine can be created with a rectangle or a polygon;

(rectangular and polygonal walls)

To create other more complex objects, developers will need to:

1. Create the appropriate shape in the editor. In the case of an Object, a point will

suffice:

 PAGE 25

2. Set the type of the shape to something descriptive – such as Player, Flashlight, or

SlidingDoor. Fengine will need this to find the appropriate “ObjDef” file and

constructor at runtime.

3. Specify an ObjDef file

An ObjDef is a separate file that specifies the properties of an entity class in

Fengine. It is also created using Tiled.

In this way, game developers don’t need to change any source code in order to

change, say, the default speed of Player objects, or color of Flashlight objects; they

just need to edit the ObjDef file, zero compilation required:

(in editor)

 PAGE 26

 (Player.h) - where the stats will be

loaded into)

How does this happen?

First, the type specified in the map editor (“Player”, in the previous example) will be used

to load the ObjDef file of that type:

(in editor)

(Map.cpp) – code that takes the Type and find the corresponding ObjDef file path

(in the PlayerDef.json ObjDef file)

(Map.cpp)

Finally, the static Player::LoadDef function, which is implemented by the developers,

will be called to populate the attributes of the Player class, and every Player object created

will have identical initial stats.

 How I plan to improve:

However, as you can see, the process of mapping a string to a class (“PLAYER” to Player) is

hardcoded and nested in an “obscure” if-statement in Map.cpp. This means that whenever

the developers add a subclass of Object, they need to modify the code in Map.cpp. Very

inconvenient and not at all logical. One way to improve this is to have a separate

configuration file that developers can modify. So instead of this:

We have something like:

 PAGE 27

[https://github.com/erincatto/Box2D/blob/master/Testbed/Tests/TestEntries.cpp].

This allows mapping with only one line of code addition.

❖ Entity Query System

As seen previously, in the map editor, every entity appears as a shape with an in-game

type specified:

 ➔

They can even be put into layers with descriptive names:

 , which encourage the content creators to be organized.

However, as the JSON map file gets loaded into its runtime twin – Fengine::Map, these

well-organized objects will be distributed into simple lists, because they are now

optimized for machines, not humans:

This means that the debugging process for game developers becomes difficult. For

example, it would be difficult to track what is happening to “that Player object named

‘player’ in the editor”, since now they are stored in different lists. To resolve this, I

developed the Entity Query System, which is responsible for storing the name, id, type,

and the pointer to the runtime object of each entity that’s loaded from map file:

 PAGE 28

The most useful query functions are:

• GetEntitiesByName

• GetEntityByID

• GetObjectByID

• GetItemByID

• GetFigureByID

• GetActiveAreaByID

When accompanied with query functions shown above, this forms a robust lookup table

that allows easier debugging. For example, an entity called “player” in the JSON map file -

- can be found

during runtime:

(in debugger)

Most importantly, this will open a door to scripting, because now entities can be reached

by identifications that are known before runtime, such as the name or id in the Tiled

editor. See more about scripting in the next chapter.

 PAGE 29

❖ Utility Functions for Objects

NPC objects often require “intelligence” so that they can make informed decisions. For

this, the Map class provides a set of utility functions that allows callers to make queries

about the environment:

 (Map.h)

There are many more (some of them aren’t documented with Doxygen because they are

used by the Map class itself).

 PAGE 30

IX. Scripting System, Event System, and Functor and Timers

➢ PURPOSE

Fengine’s scripting system allows content creators to modify the gameplay without

changing any source code. And this is with the help from multiple other systems including

the event system, the functors, and the timers.

➢ EFFECT

The maker video’s camera movement is scripted, and the script of the zoom out

animation, for example, is this:

In the video, every camera movement is scripted using the ZoomCamera and

TranslateCamera commands.

The scripting system also supports blocking commands like WaitFor that blocks the

execution of the script, but not the thread the game is running on (this is crucial!).

And it is only possible to have all this functionality with the help of Functor,

EventManager, and Timer classes.

➢ TECHNICAL DETAIL

Functor (Functor.h)

Functor are objects that are “callable”. They work by storing function pointers that can be

called later as needed, providing a means of callback in Fengine’s event driven

components.

Even though the C++ standard library already has the convenient std::function class,

Functor serves as a wrapper class around it and regulates the standard callback function

type. It requires functions to be in the form of: void (void*) - ”accepts void* and returns

Ssss

Script

:

Effect

:

 PAGE 31

void”. In Fengine, calling a Functor is just calling a function and passing in a void*

argument:

//assuming functor has been constructed already

int argument = 5;

functor(&argument); //here, a pointer to variable argument is

//passed as a void*

Here are some real usages of Functor:

• Using member function as callback

(Map.cpp)

Here, the map subscribes to attack events using its Map::HandleAttackEvent.

• Using lambda expression as callback

Here, the function TranslateCamera is wrapped into Functor translate_camera_

using a lambda expression. (more about this in the Script section)

❖ EventManager (EventManager.h)

The event system allows entities to subscribe to and fire events. Through the event

system, map entities are no longer communicating directly with each other in a chaotic

way, but in a centralized, broadcasting way. Event subscription requires an event type and

a Functor as callback.

Example for subscribing to events:

(Map.cpp) – subscribing to an attack event

 PAGE 32

(SlidingDoor.cpp) – subscribing to active area events so that the door knows to move when

an entity enters

Example for firing events:

(Map.cpp) – firing key press events

(Object.cpp) – firing item pick up / drop off events

EventManager’s centralized subscription model greatly simplifies not only the complex

game logic, but also the debugging process. During debugging, developers can easily see

who subscribed to what just by viewing the subscriber table at runtime.

You may also have noticed the Event class, but I won’t bore you with it as it is rather

complicated and boring. Just know that it’s a structure that carries information about the

events happened.

❖ Timer (Timer.h)

As I programmed the event system, I was shocked that no existing C++ library supports

object oriented timers. Most libraries, including the C++ standard library, provided only

std::this_thread::sleep_for function, which blocks the whole thread. Moreover, the

best function available, SDL’s SDL_AddTimer, took in a plain static function as callback,

which is insufficient for OOP event systems where the callbacks should be member

functions of objects. The Timer class was my invention that serves as the base of the

scripting and event systems.

In Fengine, Timer objects are created using Timer’s static function AddTimer:

(Timer.h)

 PAGE 33

AddTimer will return a handle to the timer created, allowing the user to pause, resume,

delete, and make queries about the timer (such as getting the remaining time). The class is

designed this way so that every timer created is safely stored in a static container and

managed by the Timer class itself. This way the user won’t need to worry about deleting

the timer because, after all, the Timer class is responsible for deleting each Time object it

created. Of course, the users are also given the freedom to delete a timer before its due

time (using Timer::DeleteTimer).

The internal of Timer makes use of SDL’s timer utility – SDL_AddTimer, which takes in

basically the same parameters as Timer::AddTimer does and returns an integer “id”, but

the callback must be a static function.

The way Timer class utilizes SDL’s timer utility is rather complicated to explain, so please

be ready to “parse” the rest of this section.

The Timer class uses SDL_AddTimer to register timers by passing in the timer duration,

the static callback (Timer::SDLTimerCallback), and the pointer to the new Timer’s

timer_id. The SDL_AddTimer will return an id for the Timer to store.

In C++, this is expressed in one line of code:

(Timer.cpp)

This means that, when the time is up, SDL will call the second argument (the static

function Timer::SDLTimerCallback) and pass in the third argument(a pointer to the

timer_id), which will be used by Timer::SDLTimerCallback to find the due Timer

objects. In other words, Timer::SDLTimerCallback maps static callback to object

oriented callback:

https://wiki.libsdl.org/SDL_AddTimer

 PAGE 34

I hope you get the idea. The Timer class’s implementation itself isn’t complex but it’s

difficult to explain in words…

In the end, Fengine’s Timer class allows for event scheduling in an object oriented fashion.

❖ Script (Script.h)

Last but not least, the Script class is the most interesting feature in Fengine. Just like how

the map system uses map files to avoid hardcoded levels, the scripting system uses script

files to avoid hardcoded game flow.

 Script Parsing

Given a script file, the Script constructor will parse it into a list of ScriptCommands, which

will be executed one by one when Script::Run is called.

 PAGE 35

Each line in the script corresponds to a ScriptCommand in Fengine. Each line must

contain a command type and a list of required parameters, take the first line of the sample

script:

TranslateCamera (2000,800) 2000

Here, TranslateCamera is the command type. (2000,800) is the first argument,

specifying a position in the game’s world. And 2000 is the second argument, specifying the

total time the camera should take to move.

There are dozens of examples, here’s another one:

ShowHintText "Enter the store..(not implemented)"

Again, ShowHintText is the command type, followed by a single string argument.

Each ScriptCommand parsed from each line will contain a type, a list of arguments, and a

Functor containing the “task”. The Functor will be called when the command is running,

and the list of arguments will be passed into that Functor as a void*.

This script introduces two challenges, a) we cannot simply split the line by spaces, because

each token may contain spaces, like the string argument above b) we cannot store the

arguments in a list, because they have different types: for TranslateCamera, the

parameter types are {point, int}, whereas for ShowHintText, the type is {string}.

This means that I cannot simply “split” or use a for loop to parse the parameters of each

line. It also means that something fancy like a recursive descent parser is not necessary –

all I need is the ability to read in the command type and the list of arguments.

I solved issue b) by introducing the ScriptCommandParam structure (I know, the name

is long and ugly, but necessary). This structure is able to store any “primitive” data types

including string, int, float, bool, rect(rectangle), and point.

(Script.h) – data types supported by ScriptCommandParam3

3 PARAMTYPE_POINTER is not fully supported because pointers only exist during
runtime

 PAGE 36

By storing a list of ScriptCommandParam, we are essentially storing a list of any data

types, thus solving the problem of multiple data types in one list. If you are interested in

how this structure works, I’ll give you a brief intro here. The structure contains an

anonymous union:

(Script.h)

And an enum that stores the type of data stored in the union:

It also has constructors and casting operators for all the “primitive” types:

Now issue b) is solved, and we need to solve issue a). The solution is to have different

parsing methods for diffenrent types. First, the parser retrieves the substring before the

first space, because we know that the command types (ZoomCamera, TranslateCamera)

do not contain spaces.

(Script.cpp)

Then, the parser will call ScriptCommandParam::ParseParamFromText:

 PAGE 37

(Script.h)

This function takes in a string and a list of target types as inputs and parses out a list of

ScriptCommandParam. An error message will be returned if anything goes wrong::

The function parses by using two key utility functions: GetEnclosedSubStrings and

SplitStringByDelim (both implemented in Utility.cpp).

• GetEnclosedSubStrings finds what’s enclosed in a pair of characters:

• SplitStringByDelim splits the line by a delimiter (usually space):

So, given a list of target types

, ScriptCommandParam::ParseParamFromText employs different parsing methods:

• For string: find content enclosd by “”

• For numerical types (int, float, bool): split input by spaces.

• For Point or Rect: find content enclosed by () and split content by comma to get

x,y,w,h

In the end, the function is able to output a list a ScriptCommandParam from an input

string.

 Script Execution

When Script::Run is called, one would think that commands are executed one by one

using something like a for loop… However, the problem is that Script::Run must return

 PAGE 38

immediately to prevent blocking the game thread, but some commands are blocking

statements that require some time to finish, such as the WaitFor command. So running

commands one by one would just block the game’s update and rendering thread.

I tackled this problem by treating commands differently. The script calls

Script::RunNext recursively, finishing all non-blocking statements. Then, when a

blocking statement appears, the Script will create a Timer with a callback to

Script::RunNext and return immediately. After the specified amount of time, the script

will be running once again. This simulates a blocking statement (in script execution) but

without blocking the actual game thread.

 PAGE 39

X. Physics System

➢ PURPOSE

Originally, the engine did not really have a separate physics system, because the collision

detection and response is handled by the Figure class. Every update, each Figure object

will loop through all other Figure and Object entities and detect any collision. However,

this design quickly broke down. For example, when newer types of entities are introduced

to the game, such as GameItem, it must inherit from Figure just to obtain the collision

detection functionality. Not to mention the collision detection algorithm got increasingly

slow as the entity count grew (it was O(n2) where n is the entity count).

There must be a generic way of solving collisions without considering the actual type

(such as Object, Figure, etc) of the entity. And this is why the Composition over

Inheritance design principle is the best solution. If an entity type needs physics, then it

can own a Body and add it to a World. Every entity can choose to obtain different physical

properties by configuring their Body component.

In Fengine, only kinematics (physics without force) is implemented.

➢ EFFECT

• Any entity types are allowed to own a Body component and add it to the World.

• Uniform acceleration and uniform motion are supported

• Collisions between polygons and circles are supported

➢ TECHNICAL DETAIL

❖ World (Kinematics.h)

• Each Map contains a World object, which can be obtained using Map::GetWorld.

• As the top-most level in a physics engine, World stores Body pointers in a

std::vector but also inserts each Body into a quadtree structure –

Fengine::Quadrant – for fast collision detection.

• Any entity can add its Body to a World by calling World::AddBody. Figure’s and

Object’s Body are added by default.

(Kinematics.h) – what a World contains

• Every World::Update call:

o All Bodies are updated via Body::Update

o Bodies that moved are recorded and removed from the quadtree:

 PAGE 40

(Kinematics.cpp) – how bodies updates get handled

o A list of possible colliders of each moved Body is checked:

o Removed Bodies are re-inserted into the quadtree structure:

❖ Quadrant (Quadrant.h)

The Quadrant class is Fengine’s implementation of the quadtree structure. As seen from

the previous section, it is used to efficiently find possible colliders. It is a tree structure

that splits itself into 4 smaller “quadrants” if the entity count exceeds some number

(Quadrant::max_body_count).

This structure’s main advantage over brute force is its retrieval time:

 PAGE 41

• Its Retrieve function easily narrows down the possible colliders given a

rectangular bound, because all Bodies in a Quadrant are eliminated if the

rectangular bound is not in the Quadrant. If the bound is in the quadrant, then the

quadrant may return all the Bodies it contains. However, if the current quadrant is

splitted into 4 more child quadrants, it will call the children’s Retrieve functions.

This function is O(log n) where n is the depth of the tree. See below for the code of

Quadrant::Retrieve:

However, the downside is that insert and delete are no longer constant time. They are now

O(log n). Still, it is now MUCH faster than the brute force method before with O(n2)

where n is the Body count.

❖ Motion (Kinematics.h)

Motion handles Body’s…motion. Currently, only uniform acceleration and uniform motion

are supported. Developers can:

• Configure the Speed (structure that controls the terminal speed) of the motion by

calling Motion::GetSpeed:

o The Speed structures operates by components: a speed component with a

name (string) and a magnitude (float) can be added to a Speed via

Speed::AddSpeedComponent(key,val). This allows the developers to do

something like:

speed.AddSpeedComponent(“base_speed”, 0.3f);

speed.AddSpeedComponent(“boost”, 0.05f);

 After an add component call, the structure will be marked “dirty” until…

o Speed::GetSum sums up the values of all added components. This

function is optimized, meaning that the sum is calculated and stored

locally during the first GetSum call after an add or delete component

 PAGE 42

operation. The structure will be marked “clean” until another add/delete

call.

• Set acceleration (2 dimensional, in pixel per second squared) by calling

Motion::SetAcceleration. After setting the direction, the motion will simply

accelerate at the specified acceleration, with the terminal speed in mind.

• Stop Motion by calling Motion::StopWithAcceleration. Stopping a motion

smoothly is simple: just reverse the acceleration; however, knowing when to stop

stopping is a “challenge”. It requires keeping an acceleration opposite to the

current velocity for some period of time such that the current velocity becomes

(0,0). It is almost impossible that the current velocity will become (0,0) due to

floating point error and, if we attempt rounding, the object may never stop,

because the velocity may bypass (0,0) and continue to grow in the opposite

direction. Note that calculating the amount of time required using ∆𝑡 =
∆𝑣⃑

𝑎⃑
 is also

not possible because we cannot guarantee the time between update calls in a

game. Fortunately, Motion::StopWithAcceleration takes care of this by

recording the current velocity 𝑣 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 as 𝑣 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 and reversing the acceleration

until ‖𝑣 𝑐𝑢𝑟𝑟𝑒𝑛𝑡+ 𝑣 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔‖<‖𝑣 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔‖. This sounds confusing, so please see the

illustration below:

1 2: stopping begins, reverse acceleration

3: 𝑣 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 shrinks, but still:

‖𝑣 𝑐𝑢𝑟𝑟𝑒𝑛𝑡+ 𝑣 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔‖>‖𝑣 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔‖

4: Finally,

‖𝑣 𝑐𝑢𝑟𝑟𝑒𝑛𝑡+ 𝑣 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔‖<‖𝑣 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔‖,

go to step 5

 PAGE 43

❖ Body (Kinematics.h)

A Body object does 2 jobs only:

• Update its position according to its motion: (Kinematics.cpp)

• Resolve collision with another Body (recall that the Quadrant only collects all

possible colliders, because it’s Body’s responsibility to actually check if collision

occurs and if so, respond to it)

Body currently supports mainly the following types of collision response:

• Polygon – Polygon (convex only)

• Polygon – Line

• Circle – Line

(Kinematics.h)

5: Reset 𝑣 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑎 to (0,0)!

 PAGE 44

• Rect – Rect is the most common type of detection, it uses AABB bounding box

check to find the collision response between two Rect4F (orthogonal

rectangle).

• For Polygon – Polygon detection, the engine uses Separate Axis Theorem. It

works by finding the projection of both polygons on a set of axes (2d vectors)

that are diagonal to each edge of the polygon. For each axis, the algorithm

projects both polygons onto the axis. In a loop, the algorithm records the axis

with minimum projection overlap. If there is a time when projections have no

overlap, then the algorithm ends immediately because it proves that there is

no collision. On the other hand, if the projections for all axes, the polygons are

colliding. Then, the algorithm will use the axis with the minimum overlap

recorded to get the collision response: 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ∗ 𝑎𝑥𝑖𝑠̂, where overlap is the

amount of overlap, a scalar, and 𝑎𝑥𝑖𝑠̂ is the normalized axis (mag. = 1), a vector.

• Rectangle – Line detection was my intermediate (stupid) solution before

understanding the Separate Axis Theorem. It treats the rectangle as lines and

does Line – Line check on them. Really, this should just be treated as just

Polygon-Polygon intersections.

• Line – Circle detection works the following way:

o Naming: B is the circle (and its center); L is the line (and line segment).

o Depending on the position of the circle relative to the line, there are 2

possibilities of collision. One possibility is demonstrated using the

circle on the left. This happens when the projection of center B is on

the red line segment L: the idealContact is simply defined as the

projection of point B onto L. The second possibility is demonstrated

on the right, where point B1’s projection onto L is not on segment L:

the idealContact is the endpoint of segment L that circle B1 contains.

https://gamedevelopment.tutsplus.com/tutorials/collision-detection-using-the-separating-axis-theorem--gamedev-169

 PAGE 45

o The “response” vector (the minimum translation of B to separate the

shapes) can be obtained by adding the “radius” vector to the

“projection” vector:

 , where 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 =

 𝑖𝑑𝑒𝑎𝑙𝐶𝑜𝑛𝑡𝑎𝑐𝑡 − 𝐵, and 𝑟𝑎𝑑𝑖𝑢𝑠 = − 𝑟 ∗ 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛̂ .

 PAGE 46

XI. Utility

Primitive.h and Primitive.cpp contain a collection of “primitive” data structures used in

Fengine. The two most important ones are shown below:

❖ Point2F – 2D vector (Primitive.h)

Point2F contains 2 floating point values: x and y. It is usually used to store a position in a

2d plane, but it can also function as a 2d vector, which is used extensively by the physics

engine. Its alias is Vector2F.

The following abilities are provided:

- default, copy, and (x,y) constructors

- scalar multiplication & division (*, /)

- scalar and vector addition & subtraction (+, -)

- dot product (*)

- norm

- “pseudonorm” (just norm squared, used for calculation in situations where the

actual length of vector does not matter, such as when comparing the lengths of 2

vectors)

- relational operators (>, <, ==)

- distance from another point

- ToString

- angle formed with another vector, measuring from the origin

❖ Rect4F – 4D vector (Primitive.h)

Rect4F contains 4 floating point values: x, y, w(width), and h(height). It usually stores the

position of a rectangle, with the top-left at (x,y) and some width and height. However, it is

also occasionally used as a “vector”. For example, it is used to describe a constant relation

between 2 rectangles, answering a question like this: “what values to change in x, y, w, and

h of a known rectangle to reach the other unknown rectangle?”

The following abilities are provided:

- default, copy, (x,y,w,h), (xy,wh), and (xy,w,h) constructors

- SetCenter

- GetCenter

- relational operator (==)

- vector addition and subtraction (+, -)

❖ Angle (Primitive.h)

The parameter type and return type for all angles in Fengine. See more about Angle here.

❖ Other Primitives (GLColor, GLVertex, GLShape, Line, Circle…)

https://milkywaytest.000webhostapp.com/struct_fengine_1_1_angle.html
https://milkywaytest.000webhostapp.com/_primitive_8h.html

 PAGE 47

XII. Things to be improved

1. Library data types should be completely abstracted away, because the developers

are using Fengine and they shouldn’t need to worry about the underlying libraries.

(No more GLuint or TTF_Font or nlohmann::json)
2. Possible types of entities shouldn’t be hardcoded into the map loading process,

instead use a configuration source file that developers should change (Something

similar to Box2D’s TestEntries.cpp) (see here for a concrete example).

https://github.com/erincatto/Box2D/blob/master/Testbed/Tests/TestEntries.cpp

	I. Introduction
	II. What I learned from Making Fengine
	III. Table of Contents
	IV. Project Setup
	V. Rendering System
	➢ Purpose
	➢ Showcase
	➢ Technical detail
	❖ Graphics (Graphics.h)
	❖ Sprite (Sprite.h)
	❖ Animation (Animation.h)
	❖ GLShape and GLVertex (Primitive.h)
	❖ Flashlight (Flashlight.h)

	VI. Entity System
	➢ Purpose
	➢ Effect
	➢ Technical Detail
	❖ Object (Object.h)
	❖ Figure (Figure.h)
	❖ GameItem (GameItem.h)

	VII.
	VIII. Map System (Map.h)
	➢ Purpose
	➢ Effect
	➢ Technical Detail
	❖ Overview
	❖ Map Loading (Map::LoadMap):
	• How I plan to improve:

	❖ Entity Query System
	❖ Utility Functions for Objects

	IX. Scripting System, Event System, and Functor and Timers
	➢ Purpose
	➢ Effect
	➢ Technical Detail
	Functor (Functor.h)
	❖ EventManager (EventManager.h)
	❖ Timer (Timer.h)
	❖ Script (Script.h)
	• Script Parsing
	• Script Execution

	X. Physics System
	➢ Purpose
	➢ Effect
	➢ Technical Detail
	❖ World (Kinematics.h)
	❖ Quadrant (Quadrant.h)
	❖ Motion (Kinematics.h)
	❖ Body (Kinematics.h)

	XI. Utility
	❖ Point2F – 2D vector (Primitive.h)
	❖ Rect4F – 4D vector (Primitive.h)
	❖ Angle (Primitive.h)
	❖ Other Primitives (GLColor, GLVertex, GLShape, Line, Circle…)

	XII. Things to be improved

