
MAT495 Final Report: The PCP Theorem

Andrew Feng

April 2022

The PCP theorem in is a cornerstone result in complexity theory that says two things: first, NP has proofs that
can be checked probabilistically using “few” random bits and constant queries (as low as 3); second, some NP-hard
optimization problems cannot have “good” polynomial time approximation algorithms, unless P = NP.

In this short report, I will explain precisely what the above means and why they are equivalent. Finally, I will
prove a weaker version of it. The material in this report mainly came from Arora and Barak’s book on computational
complexity.

0.1 Probabilistically Checkable Proof

The first point of view is called probabilistic checkable proof.

Definition. Let L be a language and q, r : N → N. We say L has a (r, q)-verifier if there is a polynomial-time
probabilistic Turing machine V such that

• Efficiency: On input x ∈ {0, 1}n and given access to a proof string π ∈ {0, 1}∗ of length at most q(n)2r(n),
V uses at most r(n) random bits and q(n) nonadaptive queries to bits of π. Then, V returns a bit in time
polynomial in n. Here, nonadaptive means queries do not depend on previous queries.

• Completeness: If x ∈ L, then there is some π that makes V always output 1.

• Soundness: If x /∈ L, then, for every π, V outputs 0 with probability at least 1/2.

A language L is in PCP(r, q) if it has a (cr, dq)-verifier for some positive constants c, d.

The above definition roughly captures what it means for a language to have membership proofs that can be
checked probabilistically with high confidence. Notice the constant 1/2 is arbitrary in the above definition since
repeating the algorithm can reduce the error rate.

In this view, the PCP theorem says

Theorem (PCP Theorem). NP = PCP(log n, 1).

One inclusion of this theorem is in fact trivial—PCP(log n, 1) ⊆ NP. Suppose L has a (c log n, d)-verifier V
for some positive constants c, d. Given x ∈ {0, 1}n, do the following. Nondeterministically write down a proof π
of length dnc. Loop through all binary strings r of length at most c log n and run V on x, π, r. Even though V
has random access to r, it can still be simulated in polynomial time since π is short. If V accepts for all r, accept;
otherwise, reject. This is a nondeterministic polynomial time algorithm for deciding L, so L ∈ NP.

0.2 Hardness of Approximation

The second point of view is hardness of approximation. It tells us unless P = NP, there are NP-hard optimization
problems that cannot be approximated in polynomial time to some approximation ratio. Let us make this precise.

Consider the optimization version of 3Sat, Max-3Sat. The goal of this problem is to find an assignment of
variables in formula ϕ that maximizes the number of clauses evaluating to true. If a formula ϕ has m clauses and
the best such assignment satisfies k of them, then we define the value val(ϕ) = k/m.

Then, an algorithm is said to be a ρ-approximation algorithm for Max-3Sat if for every 3Cnf formula ϕ, the
algorithm returns an assignment satisfying at least ρ · val(ϕ) clauses.

Theorem (PCP Theorem as hardness of approximation). There exists a constant ρ < 1 such that for any L ∈ NP,
there is a polynomial time computable function f : {0, 1}∗ → {0, 1}∗ satisfying

1



• if x ∈ L, then val(f(x)) = 1;

• if x /∈ L, then val(f(x)) < ρ.

The hardness of approximation view is highlighted by the following corollary.

Corollary. There is a constant ρ < 1 such that the existence of a ρ-approximation algorithm for Max-3Sat implies
P = NP.

Proof. Let ρ be the constant given by the PCP theorem and suppose there is a ρ-approximation algorithm M for
Max-3Sat. Let L ∈ NP and let f be the poly-time computable function given by the PCP theorem for L. An
algorithm for deciding L is: on input x, return 1 if and only if M(f(x)) satisfies at least a ρ fraction of clauses of
f(x). If x ∈ L, then f(x) has val(f(x)) = 1, so M(f(x)) satisfies at least a ρ · val(f(x)) = ρ fraction of clauses of
f(x). If x /∈ L, then f(x) has val(f(x)) < ρ, so M(f(x)) can only satisfy less than a ρ fraction clauses of f(x).

0.3 Equivalence

It turns out that both views are equivalent to a more general idea—the hardness of constraint satisfaction problems.

Definition. An instance ψ of a qCSP is a collection of functions ψ1, . . . , ψm (called constraints) from {0, 1}n to {0, 1}
where each ψi only depends on q bits. An assignment u of n boolean variables is said to satisfy a constraint ψi if
ψi(u) = 1. The value val(ψ) is the maximum fraction of constraints satisfied by any variable assignment. Here, m
is called the size of ψ.

It is clear that 3Sat is a subset of 3CSP.

Definition. For q ∈ N, ρ ≤ 1, define ρ-GAPqCSP to be the problem: given a qCSP instance ψ, decide whether
val(ψ) = 1 (yes instance) or val(ψ) < ρ (no instance). We do not care about the cases where the value is in between
ρ and 1, hence the “gap”.

Theorem (Hardness of CSP). There exists a constant q ∈ N and ρ < 1 such that ρ-GAPqCSP is NP-hard.

Here, NP-hard just means for any NP language, there is a polynomial time function that takes binary strings
into instances of ρ-GAPqCSP such that f(x) is a yes instance of ρ-GAPqCSP if x is in L; otherwise f(x) is a no instance.

We will show why all three theorems are equivalent.

Theorem. The probabalistically checkable proof view is equivalent to the hardness of CSP view.

Proof. (−→). Suppose NP ⊆ PCP(log n, 1). We show that 1/2-GAPqCSP is NP-hard for some q. Let L ∈ NP. By
our assumption, there is a verifier V for L that uses c log n random bits and queries the proof q times. Let x ∈ {0, 1}∗
and r ∈ {0, 1}c logn. Let Vx,r(π) be 1 if and only only if V outputs 1 on x, π with random bits r. Notice that Vx,r is
a boolean function on qnc variables but it only depends on q of them. Let ψ = {Vx,r}r∈{0,1}c log n . Then, we see that
val(ψ) = 1 if x ∈ L (since there is a proof π that makes V accept no matter what r is); and val(ψ) ≤ 1/2 if x /∈ L
(since for all proofs π, the probability of V accepting is at most 1/2).

(←−). Suppose there is some q, ρ such that ρ-GAPqCSP is NP-hard. Then, given L ∈ NP, a PCP system for L
works as follows. Let f be the poly-time reduction from L to ρ-GAPqCSP. On x, the verifier expects a proof π to be
variable assignments of f(x) = {ψi}mi=1. It randomly generates a number 1 ≤ i ≤ m and makes q queries to π to
check ψi is satisfied. If x ∈ L, then val(f(x)) = 1, so ψi is always satisfied for some assignment π. If x /∈ L, then
val(f(x)) ≤ ρ, so ψi is satisfied with probability at most ρ for any π. By repeating this, the rejecting probability
can be reduced to 1/2.

Theorem. The hardness of approximation view is equivalent to the hardness of CSP view.

Proof. (−→) Since 3Sat is a special case of CSP, this direction is automatic.
(←−) Let ϵ > 0 and q ∈ N be such that (1 − ϵ)-GAPqCSP is NP-hard. Let ψ be an instance of (1 − ϵ)-GAPqCSP

with n variables and m constraints. Notice that each constraint in ψ can be written as a boolean formula that is
the conjunction of 2q clauses, with each clause containing at most q literals. Doing this for every constraint, we get
a formula ψ′. If ψ is a yes instance, there is an assignment satisfying all the clauses of ψ′; if ψ is a no instance,
there is at least ϵ/2q fraction of clauses not satisfied for every assignment. Recall that each clause of q literals can
be transformed into q clauses with each clause being at most size 3 (this was in the proof of Sat ≤m 3Sat). Do this
for every clause in ψ′, we get ψ′′. If ψ is a yes instance, then ψ′′ is a satisfiable 3Sat instance; if not, ψ′′ satisfies at
most 1− ϵ/(q2q) fraction of clauses. This completes the proof.

2



0.4 A Proof of the Baby PCP Theorem

We will show the following baby version of the PCP theorem.

Theorem (Baby PCP). NP ⊆ PCP(poly(n), 1).

To show this theorem, notice that it is enough we show an NP-complete language is in PCP(poly(n), 1). We
will do this for the language QuadEq: the language of satisfiable systems of quadratic equations in F2. For example,

u1u2 + u3u4 = 1

u3u1 = 0

is satisfiable by setting u1 = 1, u2 = 1, u3 = 0, u4 = 0. Its NP-completeness can be seen by reducing circuit
satisfiability to it. Each wire in the circuit would correspond to a variable, and +, · can clearly be converted to
arithmetic in F2.

Notice that in (F2)
n, 02 = 0 and 12 = 1. So we can assume each term in the quadratic equations is of the form

uiuj with i ̸= j. So a system of m equations over n variables can be thought of as a m × n2 boolean matrix A
specifying the coefficients of uiuj and b ∈ (F2)

m specifying the right-hand sides.
A tool we will need is the Walsh-Hadamard code—a way to encode binary strings as boolean function. More

specifically, given u ∈ (F2)
n, its encoding wh(u) is the truth table of x 7→ x · u, where · is the dot product mod 2.

This truth table has length 2n. A key fact about them is the random subsum principle: if u ̸= v in (F2)
n, then for

half of the vectors x in (F2)
n, u · x ̸= v · x. This follows from basic linear algebra. Observe that u · x = v · x if and

only if (u− v) · x = 0 if and only if x ∈ (u− v)⊥, which is a n− 1 dimensional subspace of (F2)
n.

This random subsum principle says something crucial about Walsh-Hadamard codes: if two vectors are different,
then their code differs in half the bits!

Definition. Given ρ ∈ [0, 1] and functions f, g : (F2)
n → F2, we say they are ρ-close if at least they agree on a

fraction of at least ρ vectors.

Given a vector in (F2)
2n , we want to test if it encodes a linear function (i.e if it is of the form wh(u) for some

u ∈ (F2)
n). It turns out we can do this right most of the time.

Theorem (Linearity Testing). Let f : (F2)
n → F2 be such that

Pr
x,y∈(F2)n

[f(x+ y) = f(x) + f(y)] ≥ ρ

for some ρ > 1/2. Then f is ρ-close to a linear function.

The contrapositive of this statement is useful for us. If f is not ρ-close to any linear function, then the probability
the above equality holds for random x and y is less than ρ. We can sample random vectors xi, yi many (but constant)
times and with high probability one pair does not satisfy the equality. So we can reject with good probability (say
1/2) a function that is not ρ-close to a linear function.

Suppose f is ρ-close to a linear function, what condition does ρ need to satisfy for this function to be unique?
The answer is ρ > 3/4: say f is > 3/4-close to linear functions g1 and g2; then, among more than 3/4 of the values
f and g1 agree on, less than 1/4 of them g2 can disagree with; so g1 and g2 must agree on more than 1/2 of values,
which means g1 = g2 (random subsum principle!).

Let δ < 1/4. Given a potentially corrupted code (meaning that it is not linear) f that is (1 − δ)-close to some

linear f̂ , we would like to recover f̂ . This can be done with high probability as follows. Given x, from which we wish
to compute f̂(x), randomly generate x′ and set x′′ = x − x′; output f(x′) + f(x′′). By union bound, the output is

f̂(x) with probability at least 1− 2δ.
With the above machinery, we are ready to prove the theorem.

Proof of Baby PCP. Let A ∈ (F2)
m×n2

and b ∈ (F2)
m be an instance of QuadEq. The verifier expects the proof to

be the Walsh-Hadamard code f of a vector u ∈ (F2)
n and g of its tensor product u ⊗ u. This means f ∈ {0, 1}2n

and g ∈ {0, 1}2n
2

. We can identify u⊗ u with the vector (uiuj)i,j ∈ (F2)
n2

. The verifier expects u to contain all the
variable assignments, hence u⊗ u should be a vector that contains all the different values of quadratic monomials in
the system. This means A(u⊗ u) should be b for a satisfying assignment.

Of course, none of the above can be checked deterministically since that would take too many queries to the
proof! Instead, we do the following.

3



1. Check if f and g are 0.999-close to linear. If not, reject. By our comment on linearity testing, this can be done
while only accessing the proof a constant number of times such that if f or g are not 0.999-close, we reject
with probability at least 1/2. This means we already met the goal if the proofs are not 0.999-close to linear (to

reject ≥ 1/2 of the time). So in the following we can assume f is 0.999-close to a linear function f̂ = x 7→ x · u
and g to ĝ = x 7→ x · v.
Also, since f and g are 0.999-close to linear, if in the following steps we “query” (quoted since we can only do

so with high probability as discussed before the proof) bits of f̂ and ĝ at most 20 times, then with probability
1 − 2(0.001)(50) = 0.9 the queries came out correct. If in the next few steps we are able to reject a false
proof with probability at least t, then in fact we would have rejected it with with probability at least 0.9t,
conditioning on the fact that the queries came out correct.

2. Check if v = u ⊗ u. To do this, we randomly take r, r′ ∈ (F2)
n and check if f̂(r)f̂(r′) = ĝ(r ⊗ r′). Let

U = (uiuj)i,j be u ⊗ u written in matrix form, and V = (vi,j) be v in matrix form. Then, we see that

f̂(r)f̂(r′) = rUr′ and ĝ(r ⊗ r′) = rV r′. Note that if the ith columns of U and V are different, then the ith
entry of rW and rV are different for half the r’s. So for at least half the r’s, rW ̸= rV . Fix such an r, the
probability of r′ satisfying rUr′ ̸= rV r′ is at least 1/2. Thus, at least 1/4 of all pairs of r, r′ satisfy rUr′ ̸= rV r′

if U ̸= V . Repeat this 8 times, the probability that U = V but we missed it is (3/4)8 ≃ 0.1. So with probability

0.9 we catch it. Notice that we queried f̂ and ĝ 3(8) = 24 times.

3. Check if Av = b. Notice that computing Av would require calling ĝ m times, which is bad. Instead, we
randomly take r ∈ (F2)

m and check (rA)v = rb. By the subsum principle, if Av ̸= b, (rA)v ̸= rb half the time.
Do this for 10 times so that we catch it with probability at least 0.9.

If A, b is satisfiable, then none of the above would reject the correct proof. On the other hand, if A, b is not satisfiable,
then that means no u exists such that A(u⊗ u) = b and any proof will fail with probability at least 0.9(0.9) ≃ 0.8.
This proves NP ⊆ PCP(poly(n), 1).

4


