MAT495 Final Report: The PCP Theorem

Andrew Feng

April 2022

The PCP theorem in is a cornerstone result in complexity theory that says two things: first, **NP** has proofs that can be checked probabilistically using "few" random bits and constant queries (as low as 3); second, some NP-hard optimization problems cannot have "good" polynomial time approximation algorithms, unless $P = NP$.

In this short report, I will explain precisely what the above means and why they are equivalent. Finally, I will prove a weaker version of it. The material in this report mainly came from Arora and Barak's book on computational complexity.

0.1 Probabilistically Checkable Proof

The first point of view is called probabilistic checkable proof.

Definition. Let L be a language and $q, r : \mathbb{N} \to \mathbb{N}$. We say L has a (r, q) -verifier if there is a polynomial-time probabilistic Turing machine V such that

- Efficiency: On input $x \in \{0,1\}^n$ and given access to a proof string $\pi \in \{0,1\}^*$ of length at most $q(n)2^{r(n)}$, V uses at most $r(n)$ random bits and $q(n)$ nonadaptive queries to bits of π . Then, V returns a bit in time polynomial in n. Here, nonadaptive means queries do not depend on previous queries.
- Completeness: If $x \in L$, then there is some π that makes V always output 1.
- Soundness: If $x \notin L$, then, for every π , V outputs 0 with probability at least 1/2.

A language L is in $PCP(r, q)$ if it has a (cr, dq) -verifier for some positive constants c, d.

The above definition roughly captures what it means for a language to have membership proofs that can be checked probabilistically with high confidence. Notice the constant $1/2$ is arbitrary in the above definition since repeating the algorithm can reduce the error rate.

In this view, the PCP theorem says

Theorem (PCP Theorem). $NP = PCP(\log n, 1)$.

One inclusion of this theorem is in fact trivial—**PCP**($\log n, 1$) \subseteq **NP**. Suppose L has a ($c \log n, d$)-verifier V for some positive constants c, d. Given $x \in \{0,1\}^n$, do the following. Nondeterministically write down a proof π of length dn^c. Loop through all binary strings r of length at most clog n and run V on x, π, r . Even though V has random access to r, it can still be simulated in polynomial time since π is short. If V accepts for all r, accept; otherwise, reject. This is a nondeterministic polynomial time algorithm for deciding L, so $L \in \mathbf{NP}$.

0.2 Hardness of Approximation

The second point of view is hardness of approximation. It tells us unless $P = NP$, there are NP-hard optimization problems that cannot be approximated in polynomial time to some approximation ratio. Let us make this precise.

Consider the optimization version of 3Sat, Max-3Sat. The goal of this problem is to find an assignment of variables in formula ϕ that maximizes the number of clauses evaluating to true. If a formula ϕ has m clauses and the best such assignment satisfies k of them, then we define the value $val(\phi) = k/m$.

Then, an algorithm is said to be a ρ -approximation algorithm for Max-3Sat if for every 3Cnf formula ϕ , the algorithm returns an assignment satisfying at least $\rho \cdot \text{val}(\phi)$ clauses.

Theorem (PCP Theorem as hardness of approximation). There exists a constant $\rho < 1$ such that for any $L \in \bf NP$, there is a polynomial time computable function $f: \{0,1\}^* \to \{0,1\}^*$ satisfying

- if $x \in L$, then val $(f(x)) = 1$;
- if $x \notin L$, then $\text{val}(f(x)) < \rho$.

The hardness of approximation view is highlighted by the following corollary.

Corollary. There is a constant $\rho < 1$ such that the existence of a ρ -approximation algorithm for Max-3Sat implies $P = NP$.

Proof. Let ρ be the constant given by the PCP theorem and suppose there is a ρ -approximation algorithm M for Max-3Sat. Let $L \in NP$ and let f be the poly-time computable function given by the PCP theorem for L. An algorithm for deciding L is: on input x, return 1 if and only if $M(f(x))$ satisfies at least a ρ fraction of clauses of $f(x)$. If $x \in L$, then $f(x)$ has val $(f(x)) = 1$, so $M(f(x))$ satisfies at least a $\rho \cdot \text{val}(f(x)) = \rho$ fraction of clauses of $f(x)$. If $x \notin L$, then $f(x)$ has val $(f(x)) < \rho$, so $M(f(x))$ can only satisfy less than a ρ fraction clauses of $f(x)$.

0.3 Equivalence

It turns out that both views are equivalent to a more general idea—the hardness of constraint satisfaction problems.

Definition. An instance ψ of a qCSP is a collection of functions ψ_1, \ldots, ψ_m (called constraints) from $\{0, 1\}^n$ to $\{0, 1\}$ where each ψ_i only depends on q bits. An assignment u of n boolean variables is said to satisfy a constraint ψ_i if $\psi_i(u) = 1$. The value **val**(ψ) is the maximum fraction of constraints satisfied by any variable assignment. Here, m is called the size of ψ .

It is clear that 3Sat is a subset of 3CSP.

Definition. For $q \in \mathbb{N}$, $\rho \leq 1$, define ρ -GAPqCSP to be the problem: given a qCSP instance ψ , decide whether $\text{val}(\psi) = 1$ (yes instance) or $\text{val}(\psi) < \rho$ (no instance). We do not care about the cases where the value is in between ρ and 1, hence the "gap".

Theorem (Hardness of CSP). There exists a constant $q \in \mathbb{N}$ and $p < 1$ such that p -GAPqCSP is NP-hard.

Here, NP-hard just means for any NP language, there is a polynomial time function that takes binary strings into instances of ρ -GAPqCSP such that $f(x)$ is a yes instance of ρ -GAPqCSP if x is in L; otherwise $f(x)$ is a no instance. We will show why all three theorems are equivalent.

Theorem. The probabalistically checkable proof view is equivalent to the hardness of CSP view.

Proof. (→). Suppose $\mathbf{NP} \subseteq \mathbf{PCP}(\log n, 1)$. We show that 1/2-GAPqCSP is \mathbf{NP} -hard for some q. Let $L \in \mathbf{NP}$. By our assumption, there is a verifier V for L that uses $c \log n$ random bits and queries the proof q times. Let $x \in \{0,1\}^*$ and $r \in \{0,1\}^{c \log n}$. Let $V_{x,r}(\pi)$ be 1 if and only only if V outputs 1 on x, π with random bits r. Notice that $V_{x,r}$ is a boolean function on qn^c variables but it only depends on q of them. Let $\psi = \{V_{x,r}\}_{r \in \{0,1\}^{c \log n}}$. Then, we see that $val(\psi) = 1$ if $x \in L$ (since there is a proof π that makes V accept no matter what r is); and val $(\psi) \leq 1/2$ if $x \notin L$ (since for all proofs π , the probability of V accepting is at most 1/2).

 (\leftarrow) . Suppose there is some q, ρ such that ρ -GAPqCSP is **NP**-hard. Then, given $L \in \mathbf{NP}$, a PCP system for L works as follows. Let f be the poly-time reduction from L to ρ -GAPqCSP. On x, the verifier expects a proof π to be variable assignments of $f(x) = \{\psi_i\}_{i=1}^m$. It randomly generates a number $1 \leq i \leq m$ and makes q queries to π to check ψ_i is satisfied. If $x \in L$, then $\text{val}(f(x)) = 1$, so ψ_i is always satisfied for some assignment π . If $x \notin L$, then $\text{val}(f(x)) \leq \rho$, so ψ_i is satisfied with probability at most ρ for any π . By repeating this, the rejecting probability can be reduced to 1/2. \Box

Theorem. The hardness of approximation view is equivalent to the hardness of CSP view.

Proof. (\longrightarrow) Since 3Sat is a special case of CSP, this direction is automatic.

 (\leftarrow) Let $\epsilon > 0$ and $q \in \mathbb{N}$ be such that $(1 - \epsilon)$ -GAPqCSP is **NP**-hard. Let ψ be an instance of $(1 - \epsilon)$ -GAPqCSP with n variables and m constraints. Notice that each constraint in ψ can be written as a boolean formula that is the conjunction of 2^q clauses, with each clause containing at most q literals. Doing this for every constraint, we get a formula ψ' . If ψ is a yes instance, there is an assignment satisfying all the clauses of ψ' ; if ψ is a no instance, there is at least $\epsilon/2^q$ fraction of clauses not satisfied for every assignment. Recall that each clause of q literals can be transformed into q clauses with each clause being at most size 3 (this was in the proof of Sat \leq_m 3Sat). Do this for every clause in ψ' , we get ψ'' . If ψ is a yes instance, then ψ'' is a satisfiable 3Sat instance; if not, ψ'' satisfies at most $1 - \epsilon/(q2^q)$ fraction of clauses. This completes the proof. \Box

0.4 A Proof of the Baby PCP Theorem

We will show the following baby version of the **PCP** theorem.

Theorem (Baby PCP). NP \subseteq PCP($poly(n), 1$).

To show this theorem, notice that it is enough we show an **NP**-complete language is in $PCP(poly(n), 1)$. We will do this for the language QuadEq: the language of satisfiable systems of quadratic equations in \mathbb{F}_2 . For example,

$$
u_1u_2 + u_3u_4 = 1
$$

$$
u_3u_1 = 0
$$

is satisfiable by setting $u_1 = 1, u_2 = 1, u_3 = 0, u_4 = 0$. Its **NP**-completeness can be seen by reducing circuit satisfiability to it. Each wire in the circuit would correspond to a variable, and $+$, \cdot can clearly be converted to arithmetic in \mathbb{F}_2 .

Notice that in $(\mathbb{F}_2)^n$, $0^2 = 0$ and $1^2 = 1$. So we can assume each term in the quadratic equations is of the form $u_i u_j$ with $i \neq j$. So a system of m equations over n variables can be thought of as a $m \times n^2$ boolean matrix A specifying the coefficients of $u_i u_j$ and $b \in (\mathbb{F}_2)^m$ specifying the right-hand sides.

A tool we will need is the *Walsh-Hadamard* code—a way to encode binary strings as boolean function. More specifically, given $u \in (\mathbb{F}_2)^n$, its encoding $wh(u)$ is the truth table of $x \mapsto x \cdot u$, where \cdot is the dot product mod 2. This truth table has length 2^n . A key fact about them is the *random subsum principle*: if $u \neq v$ in $(\mathbb{F}_2)^n$, then for half of the vectors x in $(\mathbb{F}_2)^n$, $u \cdot x \neq v \cdot x$. This follows from basic linear algebra. Observe that $u \cdot x = v \cdot x$ if and only if $(u - v) \cdot x = 0$ if and only if $x \in (u - v)^{\perp}$, which is a $n - 1$ dimensional subspace of $(\mathbb{F}_2)^n$.

This random subsum principle says something crucial about Walsh-Hadamard codes: if two vectors are different, then their code differs in half the bits!

Definition. Given $\rho \in [0,1]$ and functions $f, g : (\mathbb{F}_2)^n \to \mathbb{F}_2$, we say they are ρ -close if at least they agree on a fraction of at least ρ vectors.

Given a vector in $(\mathbb{F}_2)^{2^n}$, we want to test if it encodes a linear function (i.e if it is of the form $wh(u)$ for some $u \in (\mathbb{F}_2)^n$. It turns out we can do this right most of the time.

Theorem (Linearity Testing). Let $f : (\mathbb{F}_2)^n \to \mathbb{F}_2$ be such that

$$
\Pr_{x,y \in (\mathbb{F}_2)^n} [f(x+y) = f(x) + f(y)] \ge \rho
$$

for some $\rho > 1/2$. Then f is ρ -close to a linear function.

The contrapositive of this statement is useful for us. If f is not ρ -close to any linear function, then the probability the above equality holds for random x and y is less than ρ . We can sample random vectors x_i, y_i many (but constant) times and with high probability one pair does not satisfy the equality. So we can reject with good probability (say $1/2$) a function that is not ρ -close to a linear function.

Suppose f is ρ -close to a linear function, what condition does ρ need to satisfy for this function to be unique? The answer is $\rho > 3/4$: say f is $> 3/4$ -close to linear functions g_1 and g_2 ; then, among more than $3/4$ of the values f and g_1 agree on, less than $1/4$ of them g_2 can disagree with; so g_1 and g_2 must agree on more than $1/2$ of values, which means $g_1 = g_2$ (random subsum principle!).

Let $\delta < 1/4$. Given a potentially corrupted code (meaning that it is not linear) f that is $(1 - \delta)$ -close to some linear \hat{f} , we would like to recover \hat{f} . This can be done with high probability as follows. Given x, from which we wish to compute $\hat{f}(x)$, randomly generate x' and set $x'' = x - x'$; output $f(x') + f(x'')$. By union bound, the output is $\hat{f}(x)$ with probability at least $1-2\delta$.

With the above machinery, we are ready to prove the theorem.

Proof of Baby **PCP**. Let $A \in (\mathbb{F}_2)^{m \times n^2}$ and $b \in (\mathbb{F}_2)^m$ be an instance of QuadEq. The verifier expects the proof to be the Walsh-Hadamard code f of a vector $u \in (\mathbb{F}_2)^n$ and g of its tensor product $u \otimes u$. This means $f \in \{0,1\}^{2^n}$ and $g \in \{0,1\}^{2^{n^2}}$. We can identify $u \otimes u$ with the vector $(u_i u_j)_{i,j} \in (\mathbb{F}_2)^{n^2}$. The verifier expects u to contain all the variable assignments, hence $u \otimes u$ should be a vector that contains all the different values of quadratic monomials in the system. This means $A(u \otimes u)$ should be b for a satisfying assignment.

Of course, none of the above can be checked deterministically since that would take too many queries to the proof! Instead, we do the following.

1. Check if f and q are 0.999-close to linear. If not, reject. By our comment on linearity testing, this can be done while only accessing the proof a constant number of times such that if f or q are not 0.999-close, we reject with probability at least $1/2$. This means we already met the goal if the proofs are not 0.999-close to linear (to reject $\geq 1/2$ of the time). So in the following we can assume f is 0.999-close to a linear function $\hat{f} = x \mapsto x \cdot u$ and g to $\hat{g} = x \mapsto x \cdot v$.

Also, since f and g are 0.999-close to linear, if in the following steps we "query" (quoted since we can only do so with high probability as discussed before the proof) bits of \hat{f} and \hat{g} at most 20 times, then with probability $1 - 2(0.001)(50) = 0.9$ the queries came out correct. If in the next few steps we are able to reject a false proof with probability at least t, then in fact we would have rejected it with with probability at least $0.9t$, conditioning on the fact that the queries came out correct.

- 2. Check if $v = u \otimes u$. To do this, we randomly take $r, r' \in (\mathbb{F}_2)^n$ and check if $\hat{f}(r)\hat{f}(r') = \hat{g}(r \otimes r')$. Let $U = (u_i u_j)_{i,j}$ be $u \otimes u$ written in matrix form, and $V = (v_{i,j})$ be v in matrix form. Then, we see that $\hat{f}(r)\hat{f}(r')=rUr'$ and $\hat{g}(r\otimes r')=rVr'$. Note that if the *i*th columns of U and V are different, then the *i*th entry of rW and rV are different for half the r's. So for at least half the r's, $rW \neq rV$. Fix such an r, the probability of r' satisfying $rUr' \neq rVr'$ is at least 1/2. Thus, at least 1/4 of all pairs of r, r' satisfy $rUr' \neq rVr'$ if $U \neq V$. Repeat this 8 times, the probability that $U = V$ but we missed it is $(3/4)^8 \approx 0.1$. So with probability 0.9 we catch it. Notice that we queried \hat{f} and \hat{g} 3(8) = 24 times.
- 3. Check if $Av = b$. Notice that computing Av would require calling \hat{g} m times, which is bad. Instead, we randomly take $r \in (\mathbb{F}_2)^m$ and check $(rA)v = rb$. By the subsum principle, if $Av \neq b$, $(rA)v \neq rb$ half the time. Do this for 10 times so that we catch it with probability at least 0.9.

If A, b is satisfiable, then none of the above would reject the correct proof. On the other hand, if A, b is not satisfiable, then that means no u exists such that $A(u \otimes u) = b$ and any proof will fail with probability at least $0.9(0.9) \simeq 0.8$. This proves $\mathbf{NP} \subseteq \mathbf{PCP}(poly(n), 1)$. \Box