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Chapter 1

Introduction

The point of this paper is to offer a detailed exposition of one out of three cases from
the recent paper of Castle and Tran [CT23] classifying polynomial reducts of the
complex field. The complete result says, roughly, that “most” sets of (multivariate)
complex polynomials are capable of defining + and ×.

Theorem 1.1. Suppose P is a collection of complex polynomial maps from various
Cn to C, and let M = (C,P) be the first order structure in the language where there
is a function symbol for each member of P. Then M is interdefinable with exactly
one of the following:

1) (C,U), where U is a set of unary polynomials;

2) (C,+, (λ·)λ∈F ), the F -vector space structure, where F is a subfield of C;

3) (C,×r) for some r ∈ C, where ×r is the twisted multiplication x ×r y = (x −
r)(y − r) + r;

4) (C,+,×).

By “interdefinable” structures with the same universe we mean that the class of
definable sets with parameters coincide.

The situation naturally divides into three cases based on the pregeometry on the
strongly minimal structureM = (C,P) (see chapters 2 and 3 for detailed definitions).

The first case corresponds to the “trivial” case, as it occurs exactly when the
pregeometry of M is trivial (see chapter 2). The union of the second and third cases
corresponds to nontrivial locally modular pregeometries and is the focus of this essay.
The last case, when the pregeometry ofM is not locally modular, will not be discussed
here; the proof in [CT23] that M is interdefinable with (C,+,×) uses the Restricted
Zilber Trichotomy on C from [Cas24].

Therefore, the main theorem we end up proving is the following.
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Theorem 1.2. Suppose P is a collection of complex polynomial maps, and let M =
(C,P). If M has nontrivial, locally modular pregeometry, then M is interdefinable
with (C,+, (λ·)λ∈F ) where F is a subfield of C, or with (C,×r) for some r ∈ C.

While studying an earlier version of [CT23], I found a mistake in a combinatorial
argument occuring in the proof of the nontrivial locally modular case of Theorem 1.1,
which I communicated to the authors. They were able to find an alternative argument
that avoids the error, and it is this new argument that I am giving an exposition of
here. It constitutes the bulk of chapter 4.

I will assume the background of a standard graduate one-semester course on model
theory, which covers topics such as types and saturation, as well as familiarity with
more advanced concepts from stabilty theory such as Morley rank and canonical
bases. As the main goal of this paper is to prove results from [CT23], the preliminary
chapters often reference facts without proof. Some proofs are included either because
they are highly beneficial for one’s understanding or because good references cannot
be easily found (folklore).

Chapter 2 introduces the key notions around pregeometries. The definitions are
standard, but contains some proofs as some results required later cannot be found in
the literature.

Chapter 3 explains how pregeometries arise in model theory. Some results regard-
ing quotients are proved.

And finally, Chapter 4 establishes Theorem 1.2. The novel contributions of [CT23]
all occur in this chapter. Therefore the readers familiar with the prerequisites may
find it better to skip the previous chapters.
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Chapter 2

Pregeometries

For a more detailed exposition of the theory of pregeometries, including proofs of the
facts I will state, I suggest reading the appendix C of [TZ12].

As is common in model theory, juxtaposition of sets and elements denotes unions.
For example, Aa means A ∪ {a}.

Definition 2.1. A pregeometry on a set X is a closure operator cl : 2X → 2X such
that

• (Monotonicity) A ⊆ B implies cl(A) ⊆ cl(B);

• (Finite character) x ∈ cl(A) implies x ∈ cl(A0) for some finite A0 ⊆ A;

• (Reflexivity) A ⊆ cl(A);

• (Transitivity) cl(cl(A)) = cl(A);

• (Exchange) b ∈ cl(Aa)− cl(A) implies a ∈ cl(Ab).

Usually, a pregeometry is introduced as a pair (X, cl). For this chapter, if X is
not introduced explicitly, it denotes the pregeometry (X, cl).

The prototypical example of a pregeometry is a vector space with linear span as the
closure operator. With pregeometries, we have an appropriate notion of independence.

Definition 2.2. A subset A ⊆ X is called

1) independent if a /∈ cl(A− {a}) for all a ∈ A

2) a generating set if cl(A) = X;

3) a basis if A is an independent generating set.

As expected, any independent set can always be extended to a basis, and all bases
of a pregeometries have the same cardinality.
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Fact 2.3. Let A ⊆ X be independent. Then, A can be extended to a basis of X.

Fact 2.4. Let A,B ⊆ X be bases of X. Then, |A| = |B|.

As we will see, this will allow us to define a notion of dimension for a pregeometry
and all its subsets. But first, let us recall localization and restriction.

Definition 2.5 (Localization). Let A ⊆ X. Define the operator clA on 2X by
clA(B) = cl(A ∪B). Then XA := (X, clA) is called the localization of X at A.

Fact 2.6. If (X, cl) is a pregeometry, then (X, clA) is a pregeometry for any A ⊆ X.

Definition 2.7 (Restriction). Let A ⊆ X. Define the operator clA on 2A by clA(B) =
A ∩ cl(B). Then (A, clA) is called the restriction of X to A.

Fact 2.8. If (X, cl) is a pregeometry, then (A, clA) is a pregeometry for any A ⊆ X.

Using the fact that restrictions are pregeometries, we can define the dimension of
a preogeometry as well as all its subsets at once.

Definition 2.9. The dimension of A ⊆ X, denoted dim(A), is defined as the cardi-
nality of a basis of (A, clA).

Central to our discussion are the three properties of pregeometries: trivial, mod-
ular, and locally modular.

Definition 2.10. Suppose (X, cl) is a preogemetry.

1) (X, cl) is trivial if for any nonempty A ⊆ X, cl(A) =
⋃

a∈A cl(a).

2) (X, cl) is modular if for any closed sets A,B ⊆ X,

dim(A ∪B) + dim(A ∩B) = dim(A) + dim(B).

3) (X, cl) is locally modular there is some e ∈ X such that the localization Xe of
X at {e} is modular.

Proposition 2.11. The following are equivalent:

1) (X, cl) is modular.

2) For all a, b, B ins X with dim(ab) = 2, dim(ab/B) = 1, there is c ∈ cl(B) such
that dim(ab/c) = 1.

As one would expect, dimension inside a pregeometry is entirely captured by its
poset of closed sets.
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Proposition 2.12. Let (X, cl) and (X ′, cl′) be pregeometries. Suppose there is sur-
jection f : X → X ′ such that its induced map on 2X commutes with closure (i.e
f ◦ cl = cl′ ◦f) and respects ⊊ on closed sets (i.e if A,B are closed sets such that
A is a proper subset of B, then f(A) is a proper subset of f(B)). Then for any
A ⊆ X, dim(A) = dim′(f(A)) where dim, dim′ are the dimension functions on X,X ′,
respectively.

Proof. Since the dimension of a set is equal to the dimension of its closure, it is enough
to show dim(cl(A)) = dim′(cl′(f(A))). But cl′(f(A)) = f(cl(A)). So we may assume
A is closed.

First observe that the preimage of a closed set is closed. Indeed, for any closed
C ′ ⊆ X ′, set C = f−1(C ′). Then f(cl(C)) = cl′(f(C)) = cl′(C ′) = C ′, where the first
equality uses the fact that F commutes with closure, while the second equality uses
that f is surjective. Thus cl(C) ⊆ f−1(C ′) = C, which means C is closed.

Also, from the fact that f commutes with closure, it follows immediately that f
takes closed sets to closed sets.

Next, observe that the dimension of a set is equal to the dimension of its closure.
So to show dim(A) = dim′(f(A)), it is enough to show dim(cl(A)) = dim′(cl′(f(A))) =
dim′(f(cl(A))). Thus, we may assume A is closed.

It is easy to check that the dimension of A is the largest cardinal κ such that
there is a nested chain of closed sets A0 ⊊ . . . ⊊ Aκ with A0 = cl(∅) and Aκ = A.
Apply f to this chain. As f respects ⊊, we get a chain of increasing closed sets
(note that f must take closed sets to closed sets) that unions to f(A). Therefore,
dim′(f(A)) ≥ dim(A).

Similarly, we can take the preimage of a chain to see dim′(f(A)) ≤ dim(A).

Proposition 2.13. Let (X, cl) be a pregeometry and let ∼ be an equivalence relation
on X such that closed sets are unions of ∼-classes. Then, (X/∼, cl∼) is a pregeome-
try, where the closure operator cl∼ is given by

cl∼(A/ ∼) := cl(A)/∼ .

Moreover, π : X → X/ ∼ satisfies the conditions of 2.12.

Proof. We check that cl∼ is well-defined: if A/ ∼ = B/ ∼, then cl(A) = cl(B) because
closed sets are unions of ∼-classes; thus cl(A)/ ∼ = cl(B)/ ∼.

All conditions of pregeometries except for exchange are easy to check. For ex-
change, notice that

b/ ∼ ∈ cl∼(A/ ∼) ⇐⇒ b ∈ cl(A)/ ∼ ⇐⇒ b ∈ cl(A).

Therefore it follows that

b/ ∼ ∈ cl∼(Aa/ ∼)− cl∼(A/ ∼) ⇐⇒ b/ ∼ ∈ cl∼(Aa/ ∼) and b/ ∼ /∈ cl∼(A/ ∼)

⇐⇒ b ∈ cl(Aa) and b /∈ cl(A)

=⇒ a ∈ cl(Ab)

⇐⇒ a/ ∼ ∈ cl∼(Ab/ ∼).
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It remains to check conditions of 2.12. By definition, cl∼ commutes with the
projection, which is also clearly surjective. Finally, let A ⊊ B be closed. Then, there
is some b ∈ B − A, which means b/ ∼ ∈ (B/ ∼)− (A/ ∼).

Corollary 2.14. Let (X, cl) be a pregeometry and let ∼ be an equivalence relation on
X such that closed sets are unions of ∼-classes.

1) X is trivial if and only if X/ ∼ is trivial.

2) X is modular if and only if X/ ∼ is modular.

Proof. 1) This follows from the observation that b/ ∼ ∈ cl∼(A/ ∼) if and only if
b ∈ cl(A).

2) Suppose X is modular. Let π : X → X/ ∼ be the natural quotient. Let
A′, B′ ⊆ X/ ∼ be closed. Then, A = π−1(A′) and B = π−1(B′) are closed.
Note that ∩ and ∪ are compatible with π. Applying Proposition 2.13 to

dim(A ∪B) + dim(A ∩B) = dim(A) + dim(B),

we get
dim∼(A

′ ∪B′) + dim∼(A
′ ∩B′) = dim∼(A

′) + dim∼(B
′).

The other direction is analogous.
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Chapter 3

Pregeometries, Now with Logic

One way in which pregeometries arise in model theory is from strongly minimal sets.
We refer the reader to [TZ12] for details on the model-theoretic facts that we use
throughout this chapter.

We fix a (possibly multi-sorted) complete, stable L-theory T eliminating imaginar-
ies. We work in a fixed universal domain M for T . Specifically, for some sufficiently
large cardinal κ, M |= T is a κ-saturated, strongly κ-homogeneous model (the results
in this section are also valid for class-sized models). All parameter sets A,B, . . . are
assumed to be in M and small, namely of cardinality < κ.

Recall that a definable set D is strongly minimal if every definable subset is either
finite or cofinite.

Fact 3.1 (DA is a pregeometry, 5.7.5 of [TZ12]). Let D be an A-definable strongly
minimal set. Let clA be the closure operator on 2D given by clA(X) = acl(X ∪A)∩D.
Then, DA := (D, clA) is a pregeometry.

Notice the resemblance of this notation to localization in the previous chapter.
The dimension function of DA will be denoted by dimA or sometimes by dim(·/A).

Fact 3.2 (dim = RM in strongly minimal sets, 6.4.2 of [TZ12]). Let D be an A-
definable strongly minimal set. Suppose a1, . . . , an ∈ D. Then dim(a1, . . . , an/A) =
RM(a1, . . . , an/A).

Fact 3.3 (additivity of RM in acl(D), 6.4.9 of [TZ12]). Let D be a ∅-definable strongly
minimal set and let a, b ∈ acl(D) be tuples (of possibly various sorts). Then for any
B,

RM(a, b/B) = RM(a/B) + RM(b/Ba).

Definition 3.4. For a ∅-definable strongly minimal set D, Deq := dcl(D).

It is not hard to see that Deq is the union of the images of all D-definable functions
from subsets of Dn to M . Equivalently, it contains the code of every D-definable
subset of Dn.
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We will be using some more advanced notion from geometric stability theory. In
particular, that of a nonforking extension of a complete type. A type p ∈ S(A) is
stationary if it has a unique nonforking extension to S(B) for every B ⊇ A. Every
type over an algebraic closed set is stationary (recall that T eliminates imaginary,
see 8.5 of [TZ12]). We therefore often consider the strong type of a over A, namely
stp(a/A) := tp(a/ acl(A)).

Given a stationary type, p ∈ S(A), we can consider the unique global nonforking
extension of p to S(M), say p. By a canonical base of p, we mean a set C ⊆ dcl(A)
such that for all σ ∈ Aut(M), σ(p) = p if and only if σ is identity on C. Canonical
bases always exist.

Given two strongly minimal sets X and Y , we say X almost equals (a.e) Y if they
have finite symmetric difference.

Proposition 3.5. Let D be a ∅-definable strongly minimal set, a = (a1, . . . , an) ∈ Dn

a finite tuple, and B be a small set. Then, there is a finite tuple c ∈ Deq such that c
is canonical base of stp(a/B).

Proof. We have the following key observation that holds for any global type p(x) ∈
S(M) with Morley rank k and ψ(x, a) ∈ p(x) of Morley rank k and degree 1: for
any automorphism σ ∈ Aut(M), whether σ(p) = p depends exactly on whether
ψ(M, σ(d)) almost equals ψ(M, d). It is clear that σ(p) = p implies almost equality.
To see the other direction, notice that σ(p) is a global type with Morley rank k and
degree 1 as well, and ψ(x, σ(d)) is a formula with Morley rank k and degree 1 in σ(p).
For each degree 1 formula, there is exactly one type with the same rank containing
the formula. In this case, p is the unique global type containing ψ(x, d) with the
same rank, and similarly for σ(p) and ψ(x, σ(d)). But if ψ(M, σ(d)) almost equals
ψ(M, d), then both p and σ(p) are global types containing ψ(x, d) ∧ ψ(x, σ(d)). By
uniqueness, we must have p = σ(p).

Suppose dim(a1, . . . , an/B) = k. Rearrange so that a1, . . . , ak are independent
over B. Let ϕ(x1, . . . , xn) be an Lacl(B)-formula in stp(a/B) with minimum Morley
rank and degree. We may assume ϕ(M) ⊆ Dn. Because strong types are stationary,
dM(ϕ) = 1. Let p(x) ∈ S(M) be the unique global nonforking extension of stp(a/B).

In a stable theory, every formula is stably embedded, so we can find an L-formula
ψ(x1, . . . , xn, y) and parameters d ∈ D such that ψ(x1, . . . , xn, d) defines the same set
as ϕ(x1, . . . , xn), and ψ(x1, . . . , xn, y1, . . . , ym) implies xi ∈ D for all i.

From our observation above, we see that an automorphism σ ∈ Aut(M) fixes p if
and only if ψ(M, σ(d)) almost equals ψ(M, d).

Because RM is definable in strongly minimal sets, we see that

X = {e ∈ D : RM(ψ(M, e) ∩ ψ(M, d)) = k}

is d-definable.
For any automorphism σ ∈ Aut(M), σ(X) = X if and only if ψ(M, d) almost

equals ψ(M, σ(d)). Indeed, the forward direction is direct, and the backward direction
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is as follows. Suppose ψ(M, d) almost equals ψ(M, σ(d)), by which it follows

e ∈ X ⇐⇒ RM(ψ(M, e) ∩ ψ(M, d)) = k

⇐⇒ RM(ψ(M, e) ∩ ψ(M, σ(d))) = k

⇐⇒ e ∈ σ(X).

Let c ∈ Deq be a code of X. We claim that it is a canonical base of stp(a/B).
Indeed, for any automorphism σ ∈ Aut(M),

σ(c) = σ(c) ⇐⇒ σ(X) = X

⇐⇒ ψ(M, d) almost equals ψ(M, σ(d))

⇐⇒ σ(p) = p.

For the following discussion D is an A-definable strongly minimal set.
It turns out that local modularity, a combinatorial condition on DA, has a lot

to do with dimensions of definable families of plane curves in D. Here, by a plane
curve we mean a definable subset of D2 of Morley rank 1 and degree 1 (i.e strongly
minimal).

It makes sense to say a single curve is definable, but what does it mean for a
family of plane curves to be definable?

For a family to have a suitable notion of definability, it makes sense to require
that there exists a fixed formula ϕ(x1, x2, y) such that the family consists of curves
defined by ϕ(x1, x2, ai) where the parameters ai are allowed to vary in the family.
Definability of the family then refers to the definability of {ai : i ∈ I}.

Unfortunately, because we are fixing a formula ϕ, it is possible that some ϕ(D2, ai)
is no longer a curve. For example, consider the family Ca,b = {(x, y) ∈ C2 : ax+ by =
0} where a, b ∈ C definable in (C,+,×). Take a = 0, b = 0, then Ca,b is just C2.
The solution is to require that the parameters have the same type. Indeed, because
Morley rank and degree of ϕ(x1, x2, ai) only depend on the type of ai, this ensures
every set in the family is a curve. This leads us to the following definition.

Definition 3.6. Let D be an A-definable strongly minimal set. A definable family
of plane curves in DA is an LA-formula ϕ(x1, x2, y) together with a tuple a ∈ M such
that ϕ(M, a) is a strongly minimal set in D2.

Intuitively, this family consists of all curves defined by ϕ(x1, x2, a
′) where a′ has

the same type as a over A. For convenience, we usually write the family as ϕ(x1, x2, a)
(this abuse of notation is intentional: we identify each curve with the family of curves
it belongs to).

Naively, we can measure the dimension of this family by measuring RM(a/A).
However, this dimension can be arbitrarily large and curves may “overlap”. Consider
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the case where y actually does not occur in ϕ and a1, . . . , an are algebraically indepen-
dent over A, then the proposed dimension of the family (ϕ, a) is n even though there
is only really one curve in this family. Therefore, a desirable notion of dimension
should account for curves that are almost equal.

Given a family (ϕ, a) of curves, let F denote the set-theoretic family

{ϕ(M, a′) : a′ |= tp(a/A)}.

Let ∼ be the equivalence relation on F given by almost equivalence. We are in fact
interested in the “dimension” of F/ ∼. This is precisely where canonical bases are
useful.

Let X = ϕ(M, a) be a strongly minimal set in D2, where ϕ can have parameters
from A. Then, there is a unique global generic type p(x) ∈ S(M) of ϕ(x, a)). For any
automorphism σ ∈ Aut(M/A), σ(p) = p if and only if σ(X) = ϕ(M, σ(a)) almost
equals X (see comments on this in the proof of Proposition 3.5). On the other hand,
we know that σ(p) = p if and only if σ(c) = c where c is a canonical base of p.
Therefore, it makes sense to think of RM(c/A) as the dimension of F/ ∼. This
inspires the following definition.

Definition 3.7. Let D be an A-definable strongly minimal set. Then, the dimension
of a family of plane curves ϕ(M, a) in DA is defined as RM(c/A) where c ∈ M is a
canonical base of the global generic type of ϕ(M, a).

Definition 3.8. Let D be an A-definable strongly minimal set. Then DA is linear if
every family of plane curves in DA has dimension at most 1.

Observe that for any a1, a2 ∈ D andB ⊇ A, if RM(a1, a2/B) = 1, then stp(a1, a2/B)
is the generic type of some curve containing a1, a2. Therefore, the linearity of DA

amounts to saying: for all a1, a2 ∈ D and B ⊇ A, if RM(a1, a2/B) = 1 and c is a
canonical base of stp(a1, a2/B), then RM(c/A) ≤ 1.

Because we are working in a stable theory eliminating imaginaries, every station-
ary type with Morley rank has a finite canonical base c. Together with the fact that
any two canonical bases of the same type are definably equivalent (hence have the
same RM over A), linearity of DA is the same as requiring the existence of a canonical
base c such that RM(c/A) ≤ 1.

Theorem 3.9. Let D be a strongly minimal set in M definable over A. Then, the
following are equivalent.

1. For some small B ⊇ A, DB is modular.

2. DA is linear.

3. DA is locally modular.
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Proof. We begin by showing that we can reduce to the case where A = ∅. Let
L′ be L with A added as constant symbols. Note that MA is a saturated model
of T ′ = ThL′

(MA), which is still complete and stable, and eliminates imaginaries.
Moreover, D is now ∅-definable. For clarity, let D′ denote D as a ∅-definable set in
MA. Consider the following conditions.

1′. For some small B, D′
B is modular.

2′. D′ is linear.

3′. D′ is locally modular.

It is clear that condition 3 is equivalent to 3′ becauseD′ has the same preogeometry
as DA and local modularity concerns only the progeometry structure.

Suppose condition 1 holds. Let B ⊇ A be a small set such that DB is modular.
Then, D′

B has the same pregeometry as DB. So D
′
B is modular as B ⊇ A. Conversely,

say 1′ holds. Let B′ be a small set such that D′
B is modular. Then, DB is modular

where B = A ∪B′.
To justify the reduction, it remains to show 2 is equivalent to 2′. Note that for any

tuple a and parameters E, RML′
(a/E) = RML(a/A∪E), and if RM(a/E) is bounded,

then ∅ ̸= CbL(stpL(a/A ∪ E)) ⊆ CbL′
(stpL′

(a/E)). The nonemptiness in the latter
is because stationary types with bounded Morley ranks have finite canonical bases in
saturated models of stable theories. We therefore have:

DA is linear

⇐⇒
[

∀E ⊇ A ∀a1, a2 ∈ D s.t RML(a1, a2/E) = 1,
∃c ∈ M, (c = CbL(stpL(a1, a2/E)) ∧ RML(c/A) ≤ 1)

]
⇐⇒

[
∀E ∀a1, a2 ∈ D s.t RML(a1, a2/A ∪ E) = 1,

∃c ∈ M, (c = CbL(stpL(a1, a2/A ∪ E)) ∧ RML(c/A) ≤ 1)

]
⇐⇒

[
∀E ∀a1, a2 ∈ D′ s.t RML′

(a1, a2/E) = 1,

∃c ∈ M, (c = CbL′
(stpL′

(a1, a2/E)) ∧ RML′
(c) ≤ 1)

]
⇐⇒ D′ is linear.

This completes the reduction and we may assume A = ∅.
(1 =⇒ 2). Let B be such that DB is modular. Let a1, a2 ∈ D and E be such that

RM(a1, a2/E) = 1. Let c ∈ M be a canonical base of stp(a1, a2/E). By Proposition
3.5, we may assume c ∈ dcl(D). We want to show RM(c) ≤ 1.

First a quick observation: if RM(a1, a2) ≤ 1, then tp(a1, a2/E) does not fork over
∅; so c ∈ acl(∅), giving RM(c) = 0. Let us thus suppose RM(a1, a2) = 2.

Note that our goal only depends on the global nonforking extension p(x1, x2) ∈
S(M) of stp(a1, a2/E) because the canonical base of a stationary type is defined to
be the canonical base of its global nonforking extension. So we are free to adjust
a1, a2, E as long as the nonforking extension of stp(a1, a2/E) remains p. Because
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Morley rank of types are defined as the minimal rank of formulas in them, there
is ϕ(x1, x2, e) ∈ stp(a1, a2/E) defining a strongly minimal subset X ⊆ D2. Then,
because formulas in stable theories are stably embedded, X is defined over some tuple
e′ from D, say by ϕ′(x1, x2, e

′). As ϕ′(x1, x2, e
′) is equivalent to ϕ(x1, x2, e), we have

ϕ′(x1, x2, e
′) ∈ p. Let q be p ↿ acl(e′). By saturation, q is realized by some a′1, a

′
2 ∈ D.

As RM(p) = 1 = RM(q), p is the gloabl nonforking extension of q. Therefore, , we
may assume E is a finite tuple in D by replacing a1, a2, E with a′1, a

′
2, e

′.

If σ ∈ Aut(M), then σ(c) is a canonical base of σ(p) and RM(σ(c)) = RM(c).
This allows us to further simplify to the case where a1a2E |⌣ B. Indeed, there is
a nonforking extension of tp(a1a2E) to B. By saturation, this is realized by some
a′1a

′
2E

′. In particular, we have tp(a1a2E) = tp(a′1a
′
2E

′). Because saturation implies
strong homogeneity there is σ ∈ Aut(M) sending a1a2E to a′1a

′
2E

′. Replacing a1a2E
by a′1a

′
2E

′, we may assume a1a2E |⌣ B.

To recap, we have reduced to the case where RM(a1, a2) = 2, E is a finite subset of
D, and a1a2E |⌣ B. Our goal is to show RM(c) ≤ 1 where c ∈ dcl(D) is a canonical
base of stp(a1, a2/E).

Here are some direct observations:

• c ∈ acl(E) (3.0.1)

• RM(a1, a2/B) = 2 because RM(a1, a2) = 2 and a1a2 |⌣ B; (3.0.2)

• a1a2 |⌣
E
B because a1a2E |⌣ B; (3.0.3)

• RM(a1, a2/B ∪ E) = RM(a1, a2/E) = 1 by 3.0.3; (3.0.4)

• c is also a canonical base of stp(a1, a2/E ∪B) by 3.0.3. (3.0.5)

Applying modularity of DB to clB(a1, a2) and clB(E), we get

dimB(clB(a1, a2) ∩ clB(E)) = dimB(a1, a2) + dimB(E)− dimB(a1a2E)

= dimB(a1, a2) + dimB(E)− (dimB(a1, a2/E) + dimB(E))

= 2− 1 = 1,

where the second equality follows from 3.0.2, 3.3, and 3.0.4.

Therefore, there exists d ∈ D such that d ∈ clB(a1, a2)∩clB(E) and d /∈ clB(∅). It
must be the case that dimB(a1, a2/d) = 1. Indeed, if dimB(a1, a2/d) = 2, then a1, a2, d
are independent over B, contradicting d ∈ clB(a1, a2). Therefore, stp(a1, a1/E ∪ B)
does not fork over Bd. So c ∈ acl(Bd). But dimB(d) = 1, so RM(c/B) ≤ 1. From
E |⌣ B and c ∈ acl(E), we get c |⌣ B as follows. This contradicts E |⌣ B. Hence
c |⌣ B, whereby RM(c) = RM(c/B) ≤ 1, as desired.

(2 =⇒ 3). Assume D is linear. Let e ∈ D − acl(∅), we show De is modular. By
2.11, it is enough to show: for any a1, a2 ∈ D, B ⊆ D finite, if RM(a1, a2/e) = 2 and
RM(a1, a2/Be) = 1, then there exists d ∈ cle(B) such that dime(a1, a2/d) = 1.
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Let c be a canonical base of stp(a1, a2/Be). Then c ∈ acl(Be). By linearity,
we know RM(c) ≤ 1. However, if RM(c) = 0, then RM(a1, a2/e) ≤ RM(a1, a2) =
RM(a1, a2/c) = RM(a1, a2/Be) = 1, which is a contradiction. So RM(c) has to be 1.

By 3.3, we can write

RM(a1, a2, c) = RM(a1, a2/c) + RM(c) = RM(c/a1, a2) + RM(a1, a2).

Because RM(a1, a2/c) = 1, RM(c) = 1, and RM(a1, a2) = 2, we have RM(c/a1, a2) =
0. So c ∈ acl(a1, a2).

If a1 ̸ |⌣ c, then a1 ∈ acl(c) ∩D ⊆ cle(B) as c ∈ acl(Be) and we may take d = a1
to complete the proof. Similarly for a2. It remains to consider when a1 |⌣ c and
a2 |⌣ c. Because a1a2 |⌣ e and c ∈ acl(a1, a2), we get c |⌣ e. By forking symme-
try, we get e |⌣ c, whereby tp(e/c) = tp(a1/c). By saturation, we can find d ∈ D
so that tp(a1, a2/c) = tp(e, d/c). Then, because a2 ∈ acl(a1, c) ∩ D, we have d ∈
acl(e, c)∩D. Recall that c ∈ acl(Be)∩ acl(a1, a2). Therefore, d ∈ cle(B)∩ cle(a1, a2).
If dime(a1, a2/d) = 2, then dime(a1, a2, d) = 3, contradicting d ∈ dime(a1, a2). There-
fore, dime(a1, a2/d) = 1 as desired.

(3 =⇒ 1). This is direct.

Another reason Theorem 3.9 is interesting is that it implies that the local modu-
larity of DA does not depend on the choice of A.

Corollary 3.10. Suppose the strongly minimal set D is A-definable and A′ ⊇ A.
Then DA is locally modular if and only if DA′ is locally modular.

Proof. Suppose DA is locally modular. So, by Theorem 3.9, DA is linear. Let E ⊇ A′

and a1, a2 ∈ D such that RM(a1, a2/E) = 1. Then, by linearity of DA, we know there
is a canonical base c of stp(a1, a2/E) with RM(c/A) ≤ 1. But RM(c/A′) ≤ RM(c/A).
We have thus shown that DA′ is also linear. Hence by 3.9, DA′ is locally modular.

SupposeDA′ is locally modular. Then, by Theorem 3.9, there is some B containing
A′ such that DB is modular. By the theorem again, DA is locally modular.

Proposition 3.11. Suppose the strongly minimal set D is A-definable and A′-definable.
Then DA is locally modular if and only if DA′ is locally modular.

Proof.

DA is locally modular ⇐⇒ DA∪A′ is locally modular

⇐⇒ DA′ is locally modular.

From this, it is clear that we can talk about D being locally modular without
referring to the parameters.

We mention some easy consequences.
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Proposition 3.12. Suppose D is a strongly minimal set, and ∼ is a definable equiva-
lence relation on D with finite classes. Then D is locally modular if and only if D/ ∼
is locally modular.

Proof. Let A be such that D is A-definable and ∼ is A-definable. Then the closed
sets in DA are unions of ∼-classes.

By Proposition 3.11, it is enough to show that DA is locally modular if and only if
(D/ ∼)A is locally modular. By Theorem 3.9 and possibly adding more elements to
A, we can further reduce to showing DA is modular if and only if (D/ ∼)A is modular.

Directly apply Corollary 2.14 to complete the proof.

Proposition 3.13. Suppose strongly minimal sets C and D are in definable bijection.
Then C is locally modular if and only if D is locally modular.

Proof. Let f : C → D be the definable bijection. Let A be a small set so that
all of C,D, f are A-definable. Let cl be the closure operator of CA and cl′ of DA.
Observe that CA and DA are “isomorphic pregeometries”: for any x ∈ C,X ⊆ C,
x ∈ cl(X) if and only f(x) ∈ cl′(f(X)). Clearly local modularity is invariant under
such isomorphisms.

Proposition 3.14. Let C,D be strongly minimal sets. Suppose f : C → D is a
finite-to-one definable function with cofinite image. Then C is locally modular if and
only if D is locally modular.

Proof. By 3.12, we see that C is locally modular if and only if C/ ∼ is locally modular
where ∼ is the equivalence relation induced by f . By 3.13, C/ ∼ is locally modular
if and only if f(C) is locally modular. We have thus reduced to the case where C is
a cofinite subset of D and f is just the inclusion.

Let A ⊇ D−C. We show that DA is modular if and only if CA is modular. Recall
that modular means for any X, Y closed, the following holds:

dim(X ∪ Y ) + dim(X ∩ Y ) = dim(X) + dim(Y ). (3.0.6)

Let X0, Y0 ⊆ C be closed in CA, and let X, Y be their closures in DA respectively.
We make the following observations:

• DA and CA agree on the dimension of any subset of C;

• taking the closure of a set in DA is the same as first taking the closure of it in
CA and adding D − C to it;

• the dimension of X0 (resp. Y0) is the same as the dimension of X (resp. Y ) in
DA;

• the dimension of X0 ∪ Y0 is the same as the dimension of X ∪ Y in DA;
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• for any set X ⊆ D, adding or removing D − C from it does not change its
dimension in DA

• the dimension of a set Z ⊆ DA is the same as the dimension of Z ∩ C;

• the dimension of X0 ∩ Y0 is the same as the dimension of X ∩ Y in DA.

Therefore, equation 3.0.6 holds for X0, Y0 if and only if it holds for X, Y . Together
with the fact that any X, Y closed in DA must come from taking the closure of some
X0, Y0, we see that CA is modular if and only if DA is modular.

Definition 3.15. A definable finite correspondence (or finite correspondence for
short) between strongly minimal sets X and Y is a definable C ⊆ X × Y so that
the projection from C to both X and Y are finite-to-one with cofinite image.

Corollary 3.16. Local modularity is preserved by finite correspondence.

Proof. Let C ⊆ X × Y be a finite correspondence between X and Y . Then, the
projection C → X and C → Y are finite-to-one with cofinite image. By Propsition
3.14, we get that C is locally modular if and only if X is locally modular if and only
if Y is.
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Chapter 4

Quasi-functions and Nontrivial
Locally Modular Reducts

4.1 The Strategy

Our goal is to show that if P is a collection of complex polynomials such that
M = (C,P) is a nontrivial and locally modular, then M is interdefinable with
(C,+, (λ·)λ∈F ) for some subfield F of C or (C,×r) for some fixed r. Note that as
(C,+,×) is a strongly minimal structure, so is M . To clarify, it is the pregeometry
on C induced by acl in M that we are assuming is nontrivial and locally modular.

From the trivial case of Theorem 1.1 (which we are assuming), we know the
nontriviality of reduct M implies the existence of a binary polynomial in P . Using
the classical result of Hrushovski and Pillay on classification of definable sets in locally
modular groups (introduced in 4.17), we may focus on binary polynomials definable
in M .

We develop the notion of quasi-functions, a generalization of binary functions that
is robust against small changes in the domain and codomain and against the act of
passing through finite-to-one definable functions. On top of this, we introduce the
notion of quasi-functions having small symmetric expansion, which is also preserved
under the two kinds of aforementioned actions.

Intuitively, having small symmetric expansion means a quasi-function (think just
a binary function) produces few outputs on A × A for increasingly large A in the
domain. In the recent paper [JRT22], it is shown that binary polynomials with small
symmetric expansion must be of certain special forms (strongly additive or strongly
multiplicative, as we will introduce). The main technical lemma of this paper (4.19)
then says that in locally modular reducts, all quasi-functions have small symmetric
expansions. Combining with [JRT22], we then get that all binary polynomials in lo-
cally modular reducts must be of those special forms. Some legwork with polynomials
is then carried out to complete the proof.
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4.2 The Tools: Quasi-function and the SSE

We work in a fixed infinite model M |= T of a complete T with elimination of
imaginaries.

Definition 4.1. A definable function f : X → Y is almost finite-to-one if the union
of infinite fibres of f has smaller Morley rank than X.

This definition makes sense because the union of infinite fibres is a definable set
(since RM is definable in strongly minimal theories).

The definition of quasi-function below generalizes the essence of binary polynomial
functions with respect to the Morley rank.

Definition 4.2. Let D,E be strongly minimal sets. A definable set X ⊆ D2 × E
is a quasi-function if RM(X) = 2, dM(X) = 1, and the projections X → D2 and
X → D×E (for both copies of D) are almost finite-to-one. A quasi-function X from
D2 to E is denoted X : D2 99K E.

Lemma 4.3 (Quasi-functions generalize binary polynomials). Let P (x, y) ∈ C[x, y]−
C[x] − C[y]. Then, the graph of P is a quasi-function C2 99K C in the structure
(C,+,×).

Proof. The graph of P clearly has Morley rank 2 and degree 1 because it projects
bijectively to C2. The projection Γ(P ) → C × C to the second and third copies of
C is almost finite-to-one: since P /∈ C[y], for all but finitely many a, b, the equation
P (x, a) = b has only finitely many solutions. Similarly, the projection to the first and
third copies of C is almost finite-to-one as P /∈ C[x].

The same proof also shows the graph of any definable polynomial in reducts of C
is a quasi-function.

The generality of the quasi-function makes it a coarse-grained tool that allows
passing through various natural operations associated with Morley rank.

Definition 4.4. Given two definable sets X and Y , we say

• X is large in Y if RM(Y −X) < RM(Y );

• X is small in Y if RM(X ∩ Y ) < RM(Y );

• X and Y are almost equal if X is large in Y and Y is large in X.

It should be clear that almost equality is an equivalence relation on definable sets.
Moreover, two strongly minimal sets are almost equal if and only if they have finite
symmetric difference. Finally, almost equality preserve Morley rank and degree.

Proposition 4.5 (Quasi-functions are defined modulo almost equality). Let D1, D2, E1, E2

be strongly minimal sets where D1 a.e D2 and E1 a.e E2.
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1. If X1 ⊆ (D1)
2 × E1 and X2 ⊆ (D2)

2 × E2 are a.e, then X1 is a quasi-function
if and only if X2 is a quasi-function.

2. If X1 : (D1)
2 99K E1, then there is X2 : (D2)

2 99K E2 such that X2 a.e X1.

Proof. 1. SupposeX1 is a quasi-function, we prove thatX2 is also a quasi-function.

Indeed, because Morley rank and degree are preserved by almost equality,
RM(X2) = 2 and dM(X2) = 1. We just need to check that the projections
are almost finite-to-one.

Write Xi = Yi ∪ Zi where Yi is the union of infinite fibres of the projection
Xi → (Di)

2, and Zi is the union of finite fibres. We need to show Y2 is small in
Xi (i.e RM(Y2) ≤ 1). Because Y2 is the union of infinite fibres and each infinite
fibre has RM = 1, this amounts to showing that Y2 is the union of finitely many
infinite fibres.

Suppose the fibre of X2 over (d, d
′) ∈ (D2)

2 is infinite. If (d, d′) /∈ (D1)
2 or if the

fibre of X1 over (d, d′) is finite. Then this contributes a strongly minimal set
towards X2 −X1. Because X2 is almost equal to X1, we must have RM(X2 −
X1) ≤ 1. So there can only be finitely many such (d, d′).

Similarly, the other two projections are also almost finite-to-one. This shows
X2 is a quasi-function.

2. Consider X2 = X1∩((D2)
2×E2). Equivalently, we remove (D1−D2)×D1×E1,

D1 × (D1 − D2) × E1, and D1 × D1 × (E1 − E2) from X1 to obtain X2. To
see that X2 a.e X1, we just need to show that each of three sets removed
have small intersection with X1. We will show that (D1 −D2) ×D1 × E1 has
small intersection (i.e smaller RM than X1) with X1, and the other two follow
analogously.

Write X1 = Y1 ∪ Z1 as above. Because X1 is a quasi-function, the projection
X1 → (D1)

2 is almost finite-to-one. In particular, there are only a finite number
of tuples (d, d′) ∈ (D1 − D2) × D1 such that X1 has infinite fibre over (d, d′).
Then,

RM(Y1 ∩ (D1 −D2)×D1 × E1) < 2 = RM(X1).

Because Z1 projects finite-to-one to (D1 −D2)×D1 and finite-to-one maps do
not decrease Morley rank, we also have

RM(Z1 ∩ (D1 −D2)×D1 × E1) ≤ RM((D1 −D2)×D1) = 1 < RM(X1).

Combining, we get,

RM(X1 ∩ (D1 −D2)×D1 × E1) < RM(X1).

Finally, because X2 is a subset of X1, it automatically has almost finite-to-one
projections.
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Proposition 4.5 shows that the notion of quasi-function is robust against small
changes in the domain and codomain. If we treat almost equality as an equivalence
relation on definable sets, then 4.5 says it makes sense to define a “quasi-function”
from [D2]a.e to [E]a.e as [X]a.e where X is a quasi-function from D2 to E.

As promised, the next proposition shows that being a quasi-function is a property
preserved under taking images and preimages of finite-to-one maps.

Proposition 4.6 (quasi-functions push forward and pull back). Let f : D1 → D2

and g : E1 → E2 be surjective finite-to-one definable functions, where Di and Ei are
strongly minimal. For X1 ⊆ (D1)

2 × E1, define (f, f, g)(X1) = {(f(d), f(d′), g(e)) :
(d, d′, e) ∈ X1}. Then

1. If X1 ⊆ (D1)
2 × E1 and X2 ⊆ (D2)

2 × E2 are such that dM(X) = 1 and
X2 = (f, f, g)(X1), then X1 is a quasi-function if and only if X2 is a quasi-
function.

2. For any X2 : (D2)
2 99K E2, there is X1 : (D1)

2 99K E1 such that (f, f, g)(X1) =
X2.

Proof. 1. Note that (f, f, g) is finite-to-one because f and g are finite-to-one.
Therefore, RM(X1) = RM(X2). Because (f, f, g) is surjective onto X2, we
see that dM(X2) ≤ dM(X1) = 1, so dM(X2) = 1. So (RM, dM)(X1) =
(RM, dM)(X2).

It remains to look at the projections. By symmetry, we only look at the pro-
jections Xi → (Di)

2.

Write Xi = Yi ∪ Zi where Yi is the union of infinite fibres of the projection
πi : Xi → (Di)

2 and Zi is the union of finite fibres. We need to show Y1 is small
in X1 if and only if Y2 is small in X2. Say (d, d′) ∈ (D2)

2 has an infinite fibre
(π2)

−1(d, d′) ⊆ Y2 over it. Then, because f, g are finite-to-one, there exists at
least one and at most finitely many fibres in Y1 whose image under (f, f, g) lies
in (π2)

−1(d, d′). This means Y1 consists of finitely many fibres if and only if Y2
consists of finitely many fibres. Each infinite fibre has Morley rank 1, so Yi is
small if and only if it contains only finitely many fibres. Thus, Y1 is small if and
only if Y2 is small.

2. Let X ′
1 be a degree one component of the preimage of X2 under (f, f, g).

Then, (f, f, g)(X ′
1) a.e. X2 for degree reasons. Now add the preimage of

X2−(f, f, g)(X ′
1) under (f, f, g) toX

′
1 to obtainX1 such that (f, f, g)(X1) = X2.

Note that dM(X1) = 1. Therefore, we can apply part 1 to get that X1 is a quasi-
function.

Definition 4.7. Let D and E be strongly minimal sets and X : D2 99K E be a
quasi-function. We say X has small symmetric expansion (SSE) if for all ε > 0, there
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is arbitrarily large N and A ⊆ D with |A| = N such that |X(A,A)| < N1+ε. We
say X has universal small symmetric expansion (USSE) if every quasi-function from
D2 → D has SSE. Here, X(A,A) denotes the set {e ∈ E : ∃a, a′ ∈ A, (a, a′, e) ∈ X}
and “arbitrarily large” means for every N0 ∈ N, there is N > N0 (as opposed to
sufficiently large).

Alternatively, we can view having an SSE as requiring the existence of a sequence
as explicit witness.

Lemma 4.8. X : D2 99K E has SSE if and only if there is a sequence (Ak)k<ω with
Ak ⊆ D and |Ak| → ∞ such that

lim sup
k→∞

log |X(Ak, Ak)|
log |Ak|

≤ 1. (4.2.1)

Proof. Notice that |X(A,A)| < |A|1+ε is equivalent to log |X(A,A)|
log |A| < 1 + ε, so this

follows from a routine argument.

Given that it makes sense to define quasi-function on strongly minimal sets modulo
almost equality, it is a natural question to ask whether having SSE is preserved by
almost equality. It is intuitive that if two quasi-functions are almost equal, then they
behave similarly on large sets of inputs. Indeed, the following proposition confirms
our intuition.

Proposition 4.9 (SSE is preserved by a.e). Let X1 : (D1)
2 99K E1 and X2 : (D2)

2 99K
E2 be quasi-functions with X1 a.e X2, where Di and Ei are as in proposition 4.5.
Then, X1 has SSE if and only if X2 has SSE.

Proof. Let (Ak)k<ω witness X1 having SSE. We will remove a bounded number of
elements (say ≤ c) from Ak to obtain a sequence (A′

k)k<ω with |X2(A
′
k, A

′
k)| ≤

|X1(Ak, Ak)| + l|Ak| for some constant l. Indeed, we can see that this is enough
to show (A′

k) witnesses X2 having SSE as follows. For any ε > 0, we have

log |X2(A
′
k, A

′
k)|

log |A′
k|

≤ |X1(Ak, Ak)|+ l|Ak|
log(|Ak| − c)

≤ log((l + 1)|Ak|1+ε)

log(|Ak| − c)
,

for large enough k. Therefore,

lim sup
k→∞

log |X2(A
′
k, A

′
k)|

log |A′
k|

≤ lim sup
k→∞

log((l + 1)|Ak|1+ε)

log(|Ak| − c)
≤ (1 + ε) log |Ak|

log |Ak|
= 1 + ε.

Taking ε→ 0, we see that (A′
k)k<ω is a witness.

To produce A′
k, we first remove points d ∈ Ak that are not in D2. Because D1 a.e

D2, this removes only a bounded number of points. Then, we remove points d ∈ Ak

such that |(X2−X1)(d,−)| is infinite (i.e points d such that there are infinitely many
(d′, e) ∈ D2×E2 with (d, d′, e) ∈ X2−X1). Because X1 a.e X2, X2−X1 has RM ≤ 1,
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and so there are only finitely many such points, bounded independent of k. Therefore,
we know that |A′

k| ≥ |Ak| − d for some constant d.
The following is easily deduced from strong minimality of each component of X.

Fact 4.10. If RM(X) = 1 and ∼ is a definable equivalence relation on X, then the
finite ∼-classes are bounded in size.

By construction, |(X2−X1)(d,−)| is finite for all d ∈ A′
k. We know that RM(X2−

X1) = 1. Define an equivalence relation on X2 −X1 where two tuples are equivalent
if they have the same first coordinate, then |(X2 − X1)(d,−)| is exactly the size of
the equivalence class where the first coordinate is d. By the claim, we have a bound
|(X2 − X1)(d,−)| ≤ l that holds for all d ∈ A′

k. Therefore, |(X2 − X1)(A
′
k, A

′
k)| ≤

l|A′
k| ≤ l|Ak|, so |X2(A

′
k, A

′
k)| ≤ |X1(Ak, Ak)|+ l|Ak|. This completes the proof.

Definition 4.11. Let X : D2 99K E be a quasi-function and ∼ be an equivalence
relation on D with finite classes. We say X has SSE respecting D if X has a witness
(Ak)k<ω to SSE where each Ak is a union of ∼-classes.

Proposition 4.12 (SSE pull back and push forward). Let f : D1 → D2 and g :
E1 → E2 be surjective finite-to-one definable functions, where Di and Ei are strongly
minimal. Suppose X1 : (D1)

2 99K E1 and X2 : (D2)
2 99K E2 be such that X2 =

(f, f, g)(X1). Let x ∼ y be the equivalence relation given by f(x) ∼ f(y). Then, X1

has SSE respecting ∼ if and only if X2 has SSE.

Proof. Let (Ak)k<ω be a sequence of finite subsets of D1 where each Ak is a union
of ∼-classes. Note that because Ak is a union of ∼-classes, f−1(f(Ak)) = Ak. It
is enough to show that (Ak) witnesses X1 having SSE respecting ∼ if and only if
(f(Ak))k<ω witnesses X1 having SSE. This is because any witness to X2 having SSE
must be of the from (f(Ak))k<ω for some Ak union of ∼-classes.

First, we claim that Ak and f(Ak) have the same asymptotic rate of growth.
Formally, this means there are positive constants l1, l2 such that for all sufficiently
large k, we have l1|Ak| ≤ |f(Ak)| ≤ l2|Ak|. Indeed, because f is finite-to-one and
finite classes on strongly minimal sets are bounded in size, all ∼-classes have size
smaller than some l′1. Therefore, l′1|f(Ak)| ≥ |Ak|. Taking l1 = 1/l′1 and l2 = 1
establishes this claim. Note that we only used the fact that f is finite-to-one on a
strongly minimal set in this argument.

Second, we claim thatX1(Ak, Ak) andX2(f(Ak), f(Ak)) also have the same asymp-
totic rate of growth. Indeed, we have

e2 ∈ X2(f(Ak), f(Ak)) ⇐⇒ ∃d, d′ ∈ Ak, (f(d), f(d
′), e2) ∈ X2

⇐⇒ ∃d, d′ ∈ Ak, e1 ∈ E1, (d, d
′, e1) ∈ X1 ∧ g(e1) = e2

(because Ak is a union of ∼-classes)

⇐⇒ ∃e1 ∈ X1(Ak, Ak), e2 = g(e1)

⇐⇒ e2 ∈ g(X1(Ak, Ak)).
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Therefore, g(X1(Ak, Ak)) = X2(f(Ak), f(Ak)) and we can apply the same argument
as in the previous claim, this time using the fact that g is finite-to-one on a strongly
minimal set, to establish this claim.

With the first claim, we see that |Ak| and |f(Ak)| differ by only a constant.
The second claim shows the same for log |X1(Ak, Ak)| and log |X2(f(Ak), f(Ak))|. So
lim sup log |X1(Ak,Ak)|

log |Ak|
≤ 1 if and only if lim sup log |X2(f(Ak),f(Ak))|

log |f(Ak)|
≤ 1.

We mention some easy consequences that will be used throughout.

Corollary 4.13 (USSE is preserved by almost equality). Let D1, D2 be strongly min-
imal sets. If D1 a.e. D2, then D1 has USSE if and only if D2 has USSE.

Proof. This is direct by 4.9.

Corollary 4.14 (SSE respecting an finite equivalence relation is preserved by almost
equality). Let D,E be strongly minimal and let ∼ be a definable equivalence relation
on D with finite classes. If X1, X2 : D2 99K E are almost equal, then X1 has SSE
respecting ∼ if and only if X2 has SSE respecting ∼.

Proof. Consider the projection π : D → D/ ∼. Because X1 and X2 are almost equal,
(f, f, id)(X1) almost equals (f, f, id)(X2). By 4.13, (f, f, id)(X1) has SSE if and only
if (f, f, id)(X2). Apply 4.12 to finish.

Corollary 4.15 (USSE pull back). Let f : D1 → D2 be a definable surjection between
strongly minimal sets. Then, D2 has USSE implies D1 has USSE.

Proof. Given any quasi function (D1)
2 99K D1, use 4.6 to push to a quasi-function

(D2)
2 99K D2, apply USSE of D2, and use 4.12 to pull back.

Lemma 4.16. Let R be an integral domain of characteristic zero, σ, τ ∈ R, and
H ⊆ R be a finite multiplicative subgroup of R× equipped with action on R by scaling.
Then, we can find increasingly large H-invariant sets Sk ⊆ R with 0 ∈ Sk and

lim sup
k→∞

log |σ · Sk + τ · Sk|
log |Sk|

≤ 1. (4.2.2)

Proof. Note that if (Sk)k<ω is a sequence of finite subsets of the field of fractions of R
satisfying (4.2.2 and (ck)k<ω is a sequence of nonzero elements of R, then (ck ·Sk)k<ω

always satisfies 4.2.2. So we may pass to the field of fractions and assume R is a field.
Similarly, (Sk)k<ω witnesses 4.2.2 for σ and τ if and only it witnesses 4.2.2 for σ/r

and τ/r for any r ∈ R×. So, by rescaling, we may assume σ ∈ Z. We will first prove
the case where τ is algebraic over Q.

If τ = 0, there is nothing to prove. So assume τ has degree d > 0 over Q. Then,
we can write τ as the quotient of an algebraic integer by an integer. Indeed, for any
integer polynomial p with p(τ) = 0 and ad′ being the coefficient of the highest degree
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term in p, we have that ad′τ is an algebraic integer. Rescaling σ, τ by an integer, we
may assume that τ is an algebraic integer. Let

Bk = {a0 + a1τ + . . .+ ad−1τ
d−1 : ai is an integer in [−k, k]}

and

Sk =

{∑
h∈H

h · ah : ah ∈ Bk

}
.

It is clear that 0 ∈ Sk and Sk is H-invariant.
We claim that σ · Sk + τ · Sk ⊆ SNk for some constant N independent of k. It

suffices to show this for Bk. Let N0 ∈ Z bound the absolute value of the coefficients of
the minimal polynomial of τ . Then, for any a0+a1τ+. . .+ad−1τ

d−1 ∈ Bk, we get that
τ(a0+a1τ + . . .+ad−1τ

d−1) ∈ B(N0+1)k. So if a, b ∈ Bk, then σ ·a+τ ·b ∈ B(N0+|σ|+1)k,
establishing our claim with N = N0 + |σ|+ 1.

Take any a0+ . . .+ad−1τ
d−1 ∈ BNk, we can write ai = bi ·k+ci where bi ∈ [−N,N ]

and ci ∈ [−k, k]. So∑
i

aiτ
i = k

∑
i

biτ
i +
∑
i

ciτ
i ∈ k ·BN +Bk.

Therefore, σ · Sk + τ · Sk ⊆ SNk ⊆ k · SN + Sk and subsequently

|σ · Sk + τ · Sk| ≤ |SN ||Sk|.

It follows that lim supk
log |σ·Sk+τ ·Sk|

log |Sk|
≤ 1, proving the algebraic case.

Now suppose τ is transcendental over Q. For any U ⊆ Q(H) and positive integer
d, we let Bd(U) = {a0 + . . . + ad−1τ

d−1 : ai ∈ U}. Because H is a finite group,
we know that each element of H is algebraic over Q, so τ is transcendental over
Q(H). It follows that for any U ⊆ Q(H), |Bd(U)| = |U |d. Now, observe that if
0 ∈ U ⊆ Q(H), then σ · Bd(U) + τ · Bd(U) ⊆ Bd+1(σ · U + U). Indeed, given any
a0 + . . .+ ad−1τ

d−1, b0 + . . .+ bd−1τ
d−1 ∈ Bd(U), we have

σ

(∑
i

aiτ
i

)
+ τ

(∑
i

biτ
i

)
= σa0+(σa1+ b0)τ + . . .+(σan−1+ bn−2)τ

d−1+ bn−1τ
n,

which is in Bd+1(σ · U + U).
This suggests we apply the algebraic case to R′ = Q(H) with σ and τ ′ = 1: we

get a sequence of increasingly large H-invariant finite sets (Uk)k<ω containing 0 with

lim supk
log |σ·Uk+Uk|

log |Uk|
≤ 1. Let us set Sk = Bk(Uk). This works:

• Sk is H-invariant because Uk is;

• Sk contains 0 because Uk does;
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• and finally,

lim sup
k

log |σ · Sk + τ · Sk|
log |Sk|

≤ lim sup
k

k + 1

k

log |σ · Uk + Uk|
log |Sk|

≤ 1.

4.3 Nontrivial Locally Modular Polynomial Reducts

of (C,+,×)

We now apply the tools above to prove Theorem 1.2. Fix a nontrivial locally modular
polynomial reduct M = (C,P) of (C,+,×).

The following fundamental results will be of central importance.

Fact 4.17 (classification of definable sets in locally modular groups [HP87]). Suppose
M is a strongly minimal, nontrivial, and locally modular structure. Then, there is
a definable, strongly minimal, abelian group (G, . . .) in M eq in definable finite corre-
spondence with M . Moreover, for any such G, every definable subset of every Gn is
a boolean combination of cosets of definable subgroups of Gn.

This classification is the key tool throughout this chapter. It is powerful as the
conclusion asserts that all definable relations come from a group operation.

Note that by 3.16, the G in the classification must also be locally modular.
The following result applies 4.17 to classify all degree one definable sets in G up

to almost equality.

Lemma 4.18 (degree one sets a.e degree one cosets in locally modular groups).
Suppose G is a locally modular strongly minimal group definable in M . Suppose
X ⊆ Gn has dM(X) = 1. Then, X a.e C where C is a coset of a subgroup of Gn.

Proof. By 4.17, we can write X as a boolean combination of cosets of Gn. Putting the
boolean combination into DNF and using the fact that RM of a union is the max of
the RM’s, we see that X is almost equal to the intersection of cosets and complements
of cosets in Gn. By elementary group theory, the intersection of cosets is a coset, so
we may assume X a.e Y = C0−C1−C2−. . .−Ck where Ci are cosets. Without loss of
generality, we may assume Ci ⊆ C0 for all i ≥ 1. Indeed, if RM(Ci) < RM(C0), then
the −Ci in the expression for Y does not change the fact that X almost equals Y .
Discarding all Ci such that RM(Ci) < RM(C0), we may assume RM(Ci) = RM(C0)
for all i.

If C0 is a coset of some H ≤ Gn, then, for each i ≥ 1, Ci is the coset of some
subgroup Hi of H. Because C0 has finite degree, finitely many cosets of Hi covers C0.
Thus at least one of the cosets of Hi has an intersection with X of RM ≥ RM(X).
Let C ′

i be such a coset. But because dM(X) = 1, C ′
i is the unique coset of Hi
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whose intersection with X is large in X. Consider the coset C =
⋂

i≥1C
′
i. Clearly,⋂

i≥1C
′
i ⊆ Y .

Moreover,

RM

(⋂
i≥1

C ′
i ∩X

)
= RM

(⋂
i≥1

(C ′
i ∩X)

)
= RM(X).

The second equality follows because each C ′
i ∩X almost equals X, and therefore the

entire intersection almost equals X.
To summarize, C is a coset that is large in Y , and has equal Morley rank as X.

Because Y almost equals X, we get C almost equals X.

We may add a countably infinite set of constant symbols to the language of M
without changing the fact that it is a nontrivial locally modular polynomial reduct of
(C,+,×) (local modularity is preserved by 3.11, nontriviality is preserved by satura-
tion of M). Doing so also does not change the class of definable sets. Therefore, we
may assume without loss of generality that acl(∅) is infinite. Together with the fact
that M is strongly minimal, we get that M has weak elimination of imaginaries (see
8.4.11 of [TZ12]). Using a compactness argument, we see that every strongly minimal
set in M eq is in definable finite correspondence with M .

Proposition 4.19. Suppose that every strongly minimal group in M eq is divisible
with a commutative ring of definable endomorphisms, then every strongly minimal set
in M eq has USSE.

Proof. By the comment before this proposition, we have that every strongly minimal
set in M eq is in finite correspondence with C. Therefore, every two strongly minimal
set in M eq are in finite correspondence.

By Fact 4.17, there is a strongly minimal group inM eq. Because locally modularity
is preserved by finite correspondence (3.16), we see that G is also locally modular.

Let D be any strongly minimal set in M eq, so D is in finite correspondence with
G. We will show that D has USSE after several reductions.

First, we claim that we can assume D is of the form D′/ ∼ where D′ ⊆ Gn is
a strongly minimal set and ∼ is a definable equivalence relation whose equivalence
classes are finite.

Let C ⊆ D × G be the finite correspondence between D and G. Because the
projection of C to D is almost equal to D and USSE is preserved by almost equality
(4.13), we can replace D with the projection of C to D. Letting C(d) denote the set
of g ∈ G such that (d, g) ∈ C, we view C as a multi- (but finite) valued, finite-to-one
function from D to G. Note that for any d ∈ D, n ∈ N, “|C(d)| = n” is a first order
property of d. By strong minimality of D, we know that there is a positive integer
n so that |C(d)| = n for cofinitely many d ∈ D. Define F : D → G(n) (here and
throughout, G(n) denotes the nth symmetric product of G, or equivalently the set of
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n-element subsets of G) as follows. If |C(d)| = n, let F (d) = C(d); otherwise, set
F (d) to some arbitrary value in G(n). It is clear that F is a definable, finite-to-one
function on D. In particular, F (D) is strongly minimal.

Because USSE pull back (4.15), F (D) having USSE would imply that D has
USSE. Consider the preimage of F (D) under the projection Gn → G(n). Because the
projection is finite-to-one, the preimage is also of Morley rank 1. Let D′ be a degree
1 component of the preimage. Then, F (D) almost equals D′/ ∼ where ∼ is the
equivalence relation given by the projection. Because USSE is preserved by almost
equality (4.13), we may replace D with D′/ ∼, achieving our first reduction.

By locally modularity of G, we see from Lemma 4.18 that D′ is almost equal to
a definable coset C of a subgroup of Gn. So D′/ ∼ has USSE if and only if C/ ∼
has USSE (technically, we need to modify ∼ at finitely many points so that it is an
equivalence relation on C). We have thus reduced to the case where D = C/ ∼.

Say C = c+H for some strongly minimal subgroup H of Gn. Define ∼′ on Gn by
h ∼′ k if and only if h + c ∼ k + c, then it’s clear that there is a definable bijection
from H/ ∼′ to C/ ∼ (by sending [h]∼′ to [h + c]∼). Therefore, we may assume that
D = H/ ∼ where H is a strongly minimal subgroup in Gn and ∼-classes are finite.

Furthermore, note that H is also strongly minimal and locally modular.
Therefore, we might as well assume H is G so that D has the form G/ ∼ where

∼-classes are finite.
Let us reduce to the case where ∼-classes are “small” in the further sense that

translations by elements of G do not preserve ∼-classes. More precisely, let L ≤ G
be the group of g ∈ G such that {h ∈ G : h+ g ∼ h} is cofinite. We call the elements
of L ∼-translations. We wish to reduce to the case when L is the trivial subgroup.

Clearly, L is a finite subgroup of G: for any distinct g1, . . . , gn ∈ L, we can find
h ∈ G so that h ∼ h + g1 ∼ . . . ∼ h + gn (this is because the intersection of finitely
many cofinite set is nonempty); thus the finiteness of L follows from the finiteness of
∼-classes. It is also clear from the definition that all but finitely many ∼-classes are
L-invariant.

By preservation of USSE under almost equality (4.13), G/ ∼ has USSE if and only
if the set of L-invariant classes has USSE, which can be viewed as a quotient of G/L
precisely as follows. Define an equivalence relation ∼′ on G/L where g + L ∼′ h+ L
if and only if

• each of g + L and h+ L intersects some ∼-class that is not L-invariant, or

• both are subsets of the same L-invariant ∼-class.

Consider the function sending each L-invariant [g]∼ to [g+L]∼′ . This is a definable
injection from the set of L-invariant ∼-classes to (G/L)/ ∼′ with cofinite image (in
fact, at most one point in (G/L)/ ∼′ lies outside the image). Therefore, G/ ∼ has
USSE if and only if (G/L)/ ∼′ has USSE. Furthermore, notice that G/L has no
nontrivial ∼′-translations: g+L ∼′ g+h+L for cofinitely many cosets g+L implies
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g ∼ g+ h for cofinitely many g ∈ G, so h ∈ L. Because local modularity is preserved
by definable quotients with finite fibres (3.12), G/L satisfies the same conditions as
G (local modularity, finite correspondence with M , strong minimality, every strong
minimal group in (G/L)eq is divisible with commutative definable endomorphism
ring). So we may assume D = G/ ∼ where G has no ∼-translations.

Claim 4.19.1. Let X ⊆ G2 be a strongly minimal subset of the graph of ∼. Then
there are a definable automorphism σ of G and b ∈ G such that X is almost equal to
the graph of x 7→ σ(x) + b.

Proof. By 4.18, X is almost equal to a coset C of a strongly minimal subgroup in G2.
The projection of C to either copy of G is a coset of G, so it is either finite or the
entire G. Say the projection is finite. Then it has to be a singleton {g} because C is
strongly minimal. This contradicts the fact that ∼ has finite classes.

Therefore, we can assume that C → G is surjective for both copies of G. It follows
from elementary group theory that the fibres of the projection (say, to the first copy
of G) are cosets of the same subgroup L ≤ G. Take any 0 ̸= h ∈ L. Because X
is almost equal to C, we get that for cofinitely many g ∈ G, g ∼ g + h. This is
impossible. Therefore, the projection C → G is bijective for both copies of G, and so
C is the graph of some σ(x) + b as desired.

Let H be the set of maps x 7→ σ(x) + b whose graph is equal to some strongly
minimal subset of the graph of ∼. Then H is finite because the graph of ∼ has Morley
rank 1 (it projects finite-to-one onto G). It’s clear that it also forms a group under
composition.

The union of graphs of maps in H is almost equal to the graph of ∼ and the action
of H induces a definable equivalence relation on G. Therefore, we may assume that
∼ is given by the action of H on G (this can be justified in a similar way to how we
reduced to G/L above).

Consider the group homomorphism that sends (x 7→ σ(x) + b) ∈ H to σ in the
multiplicative group of the ring of definable endomorphisms of G, which is assumed
to be commutative. This map is injective because each σ can only appear in one
element of H. Indeed, if σ appear twice, then we would contradict the fact that G
has no nontrivial ∼-translation. Therefore, H is isomorphic to a finite subgroup of
the multiplicative group of an integral domain (a nonzero definable endomophisms of
a strongly minimal group is always surjective, hence we have an integral domain). It
follows that H is cyclic. Let h = (x 7→ σ(x) + b) ∈ H be a generator. Notice that
h has a unique fixed point: clearly, σ is not the identity, so σ − 1 is nonzero and
therefore surjective; say (σ− 1)(b′) = b, then b′ is the fixed point of h. By applying a
translation, we can reduce to the case where 0 is the fixed point of h. This is formally
justified by defining a bijection from G/ ∼ to G/ ∼′ in M eq where x ∼′ y if and only
if x+b′ ∼′ y+b′. After reduction, H is just a multiplicative subgroup of the definable
endomorphism ring of G. In other words, D is the quotient of G by the action of a
finite group of definable endomorphisms of G.
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Let X : D2 99K D be a quasi-function. By 4.6, we can find X ′ : G2 99K G such
that π(X ′) = X. We just need to show that X ′ has a SSE respecting the action
of H. By 4.18, X ′ is almost equal to a coset of G3. Because SSE respecting an
equivalence relation is preserved under almost equality (4.14), we may assume X ′

is a coset. Consider the projection X ′ → G2 (the first two copies of G). Because
the Morley rank of X ′ is 2 and the projection is almost finite-to-one, it follows that
X ′ projects to a rank two coset of G2. Because RM(G2) = 2 and dM(G2) = 1, the
projection is surjective. From elementary group theory, we see that all fibres of the
projection are finite cosets of a fixed finite subgroup of G, say, of order m. Apply
the map g 7→ mg on the third coordinate of X ′, we can assume by 4.12 (with f the
identity) that X ′ is the graph of a function G2 → G. In fact, X ′ must be the graph
of some (x, y) 7→ σ(x) + τ(y) + b for some b ∈ G and definable endomorphisms σ and
τ of G. By 4.12, we can assume b = 0.

Taking R as the ring of definable endomophisms of G, we can apply 4.16 to
σ, τ ∈ R to get increasingly large H-invariant sets of endomorphisms Sk ⊆ R with

lim sup
k→∞

log |σ · Sk + τ · Sk|
log |Sk|

≤ 1.

Because nonzero endomorphisms of G have finite kernels (this is direct from G
being strongly minimal), and saturation, we can find x0 ∈ G such that |Sk(x0)| = |Sk|.
Take Ak = Sk(x0). The fact that Ak is a small symmetric expansion of X ′ follows
from |σ · Sk + τ · Sk| = |X ′(Ak, Ak)|.

Fact 4.20 (Theorem 4.13, [Poi01]). Every definable group in Cn is definably (in
(C,+,×)) isomorphic to an definable algebraic group.

Lemma 4.21. Let P (x, y) ∈ C[x, y] − C[x] − C[y] be a polynomial definable in M .
Then P has SSE.

Proof. By Proposition 4.19, it suffices to show that if G is a definable strongly min-
imal group in M eq, then G is divisible and its ring of definable endormophisms is
commutative.

Since M is a reduct of (C,+,×), G is also definable in (C,+,×), and hence by
4.20 G is (C,+,×)-definably isomorphic to an algebraic group H.

As we have noted, G is in definable finite correspondence with C. Hence H is
in (C,+,×)-definable correspondence with C. In particular, this means H is a one-
dimensional algebraic group.

The identity component H0 of H, is therefore a connected one-dimensional alge-
braic group over C. It is well-know that the only possibilities for these are (C,+),
(C×,×), and elliptic curves. In particular, H is not a torsion group.

We claim that this forces G to be divisible. Fix k > 0 and consider the M -
definable endomorphism [k] : G→ G given by multiplication by k. We need to show
that it is surjective. As G is strongly minimal, it suffices to show that the image [k]G
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is not finite. But as G is connected (by strong minimality), [k]G can only be the
trivial subgroup if it is finite. This is not possible because G is not torsion. So G is
divisible.

But this in turn implies that H is divisible. Since H/H0 is finite (H/H0 makes
sense H0 is a normal subgroup of H), and hence of finite order, divisibility forces
H = H0. That is, H itself is isomorphic to (C,+), (C×,×), or an elliptic curve.

To summarize, we have show that if G is a strongly minimal group in M eq, then
G is divisible and it is (C,+,×)-definably isomorphic to an algebraic group H, where
H is either (C,+), (C×,×), or an elliptic curve. Now, the ring of M -definable en-
domorphisms HomM(G) of G can be viewed as a subring of Hom(C,+,×)(H), which is
well-known to be commutative. Therefore HomM(G) is commutative, as desired.

Most of the difficult work is completed at this point. We apply the results to show
that any locally modular reduct must be interdefinable with the twisted multiplication
reduct or a vector space reduct. The exposition follows the original paper quite closely.

Definition 4.22. Let P (x, y) ∈ C[x, y]− C[x]− C[y].

• P is weakly additive if there are nonconstant unary polynomials f, u, v such that
P (x, y) = f(u(x) + v(y)).

• P is strongly additive if there are nonconstant unary polynomials f, u and con-
stants a, b such that P (x, y) = f(au(x) + bu(y)).

• P is weakly multiplicative if there are nonconstant unary polynomials f, u, v
such that P (x, y) = f(u(x)v(y)).

• P is strongly multiplicative if there are nonconstant unary polynomials f, u and
m,n ≥ 0 such that P (x, y) = f(um(x)un(y)).

It is clear that strongly additive/multiplicative implies weakly additive/multiplca-
tive.

A key ingredient is that SSE implies strong additivity or strong multiplicativity,
as was shown earlier in [JRT22].

Fact 4.23 (Theorem 1.1, [JRT22]). If P (x, y) ∈ C[x, y]− C[x]− C[y] has SSE, then
P is strongly additive or strongly multiplicative.

Together with Lemma 4.21, we get the following.

Corollary 4.24. Let P (x, y) ∈ C[x, y]−C[x]−C[y] be a polynomial definable in M .
Then P is strongly additive or strongly multiplicative.

Lemma 4.25. Let P (x, y) ∈ C[x, y]− C[x]− C[y] be a polynomial definable in M .

• If P is weakly additive, then P is nonconstant on every horizontal and vertical
line.
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• If P is weakly multiplcative, P is constant on at least one horizontal and one
vertical line.

• P is not both weakly additive and weakly multiplicative.

Proof. If P (x, y) = f(u(x) + v(y)). Then, as f and u are nonconstant, P (x, y) must
not be constant on any horizontal line. Similarly for every vertical line.

If P (x, y) = f(u(x)v(y)). Choose y0 such that v(y0) = 0. Then on the horizontal
line y = y0, P (x, y) is constant. Similarly for some vertical line.

The last point then follows.

Corollary 4.26. Let P (x, y) ∈ C[x, y]−C[x]−C[y] be a polynomial definable in M .

• P is strongly additive if and only it is weakly additive; P is strongly multiplica-
tive if and only if it is weakly additive.

• If P is weakly additive, then degx(P ) = degy(P ).

• If P (x, y) = f(u(x)v(y)), then u and v have the same roots.

Proof. The first point follows from the fact that P is strongly additive or strongly
multiplcative (4.24) and that it cannot be both weakly additive and weakly multi-
plicative.

The rest follows from the first point.

Proposition 4.27. Let P (x, y) ∈ C[x, y]−C[x]−C[y] be a strongly additive polyno-
mial definable in M . Then P (x, y) is linear.

Proof. Write P (x, y) = f(au(x) + bu(y)).

Claim 4.27.1. Every unary polynomial g definable in M is linear.

Proof. We may assume g is not constant. Define Q(x, y) = P (x, g(y)) = f(au(x) +
bv(g(y))), which is weakly additive. By Corollary 4.26, Q is strongly additive. There-
fore, degx(Q) = degy(Q), which implies deg(g) = 1.

Choose y ∈ C so that u(y) = 0. Then, by the claim, g(x) = f(au(x)) is linear.
This implies f and u are linear, and so is P .

Recall that the twisted multiplication is defined by a×r b = (a− r)(b− r) + r.

Definition 4.28. A monomial twisted by r is a polynomial of the form a ×r x1 ×r

. . .×r xn.

Lemma 4.29. Suppose f and g are nonconstant unary polynomials such that f and
f ◦ g have the same roots.

• If g is not linear, then f has only one root.
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• If r is the unique root of f , then g is a monomial twisted by r.

Proof. Let R be the set of roots of f . Then f and f ◦g having the same roots amounts
to saying g(R) ⊆ R and g−1(R) ⊆ R. Because g is surjective and g−1(R) ⊆ R, we
have g(R) = R. This implies g−1(R) ⊇ R. Hence g(R) = g−1(R) = R.

Let r ∈ R and s = g(r). Then r is the unique solution to g(x) = s. Therefore we
can write g(x) = a(x− r)d + s where d = deg(g).

For the first point, suppose g is not linear. Then d > 1 and g′(x) = ad(x−r)d−1 is
not constant. Notice that r is the only root of g′, which means g uniquely determines
r. Therefore the only root of f is r.

For the second point, suppose r is the unique root of f . Then s = r, giving
g(x) = a(x− r)d + r.

Corollary 4.30. Let P (x, y) ∈ C[x, y]−C[x]−C[y] be a strongly multiplcative poly-
nomial definable in M . Then P (x, y) is a twisted monomial.

Proof. Write P (x, y) = f(um(x)un(y)).

Claim 4.30.1. u has a unique root r and every unary polynomial g definable in M
is a monomial twisted by r.

Proof. Define Q(x, y) = P (x, g(y)) = f(um(x)un(g(y))). Then, by Corollary 4.24,
Q is strongly multiplicative. Therefore, um and (u ◦ g)n have the same roots. This
implies u and u ◦ g have the same roots.

If g is nonlinear, then we can apply Lemma 4.29 to see that u has a unique root.
If not, consider g′(x) = Q(x, x). Then g′ is nonlinear, definable inM . Our conclusion
from the previous paragraph holds for g′ (i.e u and u◦g′ have the same roots). Lemma
4.29 implies u has a unique root r.

Apply 4.29 again, we see that g must be a monomial twisted by r.

Pick y such that u(y) = 1. Then f(um(x)) is definable in M . By our claim,
f(um(x)) is a monomial twisted by r. Write f(um(x)) − r = a(x − r)d. Note that
because r is the only root of u, we can write u(x) = b(x−r)e for some b, e. Therefore,
we get f(bm(x− r)me)− r = a(x− r)d. Write z = x− r, we get f(bmzme) = azd. This
is only possible if f(x) is some monomial xk. Therefore, we have

f(um(x)un(y)) = ((b(x− r)e)m(b(y − r)e)n)k + r = bmk+nk(x− r)me(y − r)ne + r,

which is a monomial twisted by r.

Proposition 4.31. 1) If some polynomial in P is linear and depends on at least
two variables, then M defines +.

2) If all polynomials in P are linear, then M is interdefinable with the F -vector
space structure (C,+, (λ·)λ∈F ) where F is the subfield of C generated by coeffi-
cients of nonconstant terms of polynomials in P.
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3) If some polynomial in P is a monomial twisted by r and depends on at least two
variables, then M defines ×r.

4) If there exists r ∈ C such that all polynomials in P are monomials twisted by r,
then M is interdefinable with (C,×r).

Proof. 1) Suppose P (x1, . . . , xn) ∈ P is linear and x1, x2 occur in P . We can write

P (x1, . . . , xn) = b+
∑
k

akxk.

By setting all variables other than x1 so that
∑

k>1 akxk = −b, we get the
that x 7→ a1x is definable in M . Similarly, we get that x 7→ a2x is definable.
Therefore the inverses x 7→ a−1

1 x and x 7→ a−1
2 x are definable. Setting all

variables in P other than x1 to 0, we get the that x 7→ a1x + b is definable.
Precomposing with x 7→ a−1

1 x, we get the map x 7→ x+b, which means x 7→ x−b
is definable. Setting all variables in P other than x1, x2 to 0, we get the map
x1, x2 7→ a1x1 + a2x2 + b. Postcomposing with x 7→ x − b and precomposing
with x1 7→ a−1

1 x1 and x2 7→ a−1
2 x2, we recover the addition x, y 7→ x+ y.

2) It is clear that F -vector space structure defines all polynomials in P . The other
direction follows from 1). Indeed, by nontriviality of M and the trivial part of
Theorem 1.1, some polynomial in P depends on at least two variables. Applying
1), we get that x, y 7→ x+y is definable. Then, x 7→ 0 and x 7→ −x are definable.
It is then clear that if a is the coefficient of a nonconstant term of a polynomial
in P , then x 7→ ax is definable. If λ can be obtained by taking products and
quotients of such a’s, then x 7→ λx is also definable. Hence the F -vector space
structure is definable.

3) Suppose P (x, y, . . .) = a(x − r)m(y − r)n(. . .) + r ∈ P . Setting all variables
other than x, y appropriately so that (. . .) = a−1, we get

x, y 7→ x×r . . .×r x︸ ︷︷ ︸
m times

×r y ×r . . .×r y︸ ︷︷ ︸
n times

is definable. Similarly, we get

x 7→ x×r . . .×r x︸ ︷︷ ︸
m times

and y 7→ y ×r . . .×r y︸ ︷︷ ︸
n times

.

Precomposing the inverses of these with the function above, we get x, y 7→ x×ry.

4) Suppose M is interdefinable with (C,×r). Then it’s clear that we can recover
any monomial twisted by r. Note that by the trivial case of Theorem 1.1, there
is a polynomial in P in at least two variables. The converse then follows from
3).
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Theorem 4.32. M is interdefinable with a vector space or a twisted multiplication.

Proof. By nontriviality of M , there is some P (x1, . . . , xn) ∈ P involving at least
two variables. We can specialize all other variables so that P is a nonzero binary
polynomial (say x1, x2 actually occur in P (x1, . . . , xn); take any a3, . . . , an such that
P (x1, x2, a3, . . . , an) ̸≡ 0).

By Corollary 4.24, Proposition 4.27, and Corollary 4.30, P must be linear or a
twisted multiplication. By Proposition 4.31 1) and 3), we get that + or ×r is definable
in M . Let ⊗ denote this group operation.

Let P ′ ∈ P . View P ′ as a function from Mm → M . Then the graph of P ′ has
Morley degree one and rank m in M . By Lemma 4.18, Γ(P ′) almost equals a degree
one coset C ⊆ Mm+1 of some subgroup of (Mm+1,⊗m+1). By almost equality with
Γ(P ′), the projection C → Mm is almost finite-to-one. But C is a coset, so the
projection is in fact a bijection. It follows from elementary group theory that C is
the graph of some Q : (x1, . . . , xm) 7→ a ⊗ σ1(x1) ⊗ . . . ⊗ σm(xm) for some a ∈ M
and ⊗-endomorphisms σi. If ⊗ is +, then Q is a linear polynomial; otherwise, Q
is a monomial twisted by r. In any case, because Γ(P ′) almost equals C, we get
RMC(V (P ′ − Q)) ≥ RMM(V (P ′ − Q)) = m. Here, V (·) denotes the zero set. In C,
Morley rank corresponds to the dimension of V (P ′ −Q) as a variety. Thus P ′ = Q.

This shows either all polynomials in P are linear, or all are monomials twisted
by r. By 2) and 4) of Proposition 4.31, we see that M is interdefinable with some
F -vector space or (C,×r).
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